| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-reclt0d | Structured version Visualization version GIF version | ||
| Description: The reciprocal of a negative real is negative. (Contributed by SN, 26-Nov-2025.) |
| Ref | Expression |
|---|---|
| sn-reclt0d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| sn-reclt0d.z | ⊢ (𝜑 → 𝐴 < 0) |
| Ref | Expression |
|---|---|
| sn-reclt0d | ⊢ (𝜑 → (1 /ℝ 𝐴) < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-reclt0d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | sn-reclt0d.z | . . . 4 ⊢ (𝜑 → 𝐴 < 0) | |
| 3 | 2 | lt0ne0d 11677 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 4 | 1, 3 | sn-rereccld 42481 | . 2 ⊢ (𝜑 → (1 /ℝ 𝐴) ∈ ℝ) |
| 5 | rernegcl 42404 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 −ℝ 𝐴) ∈ ℝ) | |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → (0 −ℝ 𝐴) ∈ ℝ) |
| 7 | relt0neg1 42489 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < (0 −ℝ 𝐴))) | |
| 8 | 1, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 < 0 ↔ 0 < (0 −ℝ 𝐴))) |
| 9 | 2, 8 | mpbid 232 | . 2 ⊢ (𝜑 → 0 < (0 −ℝ 𝐴)) |
| 10 | 4, 1 | remulneg2d 42448 | . . . 4 ⊢ (𝜑 → ((1 /ℝ 𝐴) · (0 −ℝ 𝐴)) = (0 −ℝ ((1 /ℝ 𝐴) · 𝐴))) |
| 11 | 1, 3 | rerecid2 42483 | . . . . 5 ⊢ (𝜑 → ((1 /ℝ 𝐴) · 𝐴) = 1) |
| 12 | 11 | oveq2d 7357 | . . . 4 ⊢ (𝜑 → (0 −ℝ ((1 /ℝ 𝐴) · 𝐴)) = (0 −ℝ 1)) |
| 13 | 10, 12 | eqtrd 2766 | . . 3 ⊢ (𝜑 → ((1 /ℝ 𝐴) · (0 −ℝ 𝐴)) = (0 −ℝ 1)) |
| 14 | reneg1lt0 42513 | . . . 4 ⊢ (0 −ℝ 1) < 0 | |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → (0 −ℝ 1) < 0) |
| 16 | 13, 15 | eqbrtrd 5108 | . 2 ⊢ (𝜑 → ((1 /ℝ 𝐴) · (0 −ℝ 𝐴)) < 0) |
| 17 | 4, 6, 9, 16 | mulgt0con1d 42503 | 1 ⊢ (𝜑 → (1 /ℝ 𝐴) < 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 class class class wbr 5086 (class class class)co 7341 ℝcr 11000 0cc0 11001 1c1 11002 · cmul 11006 < clt 11141 −ℝ cresub 42398 /ℝ crediv 42473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-2 12183 df-3 12184 df-resub 42399 df-rediv 42474 |
| This theorem is referenced by: mullt0b1d 42516 |
| Copyright terms: Public domain | W3C validator |