Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mullt0b1d Structured version   Visualization version   GIF version

Theorem mullt0b1d 42516
Description: When the first term is negative, the second term is positive iff the product is negative. (Contributed by SN, 26-Nov-2025.)
Hypotheses
Ref Expression
mullt0b1d.a (𝜑𝐴 ∈ ℝ)
mullt0b1d.b (𝜑𝐵 ∈ ℝ)
mullt0b1d.1 (𝜑𝐴 < 0)
Assertion
Ref Expression
mullt0b1d (𝜑 → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0))

Proof of Theorem mullt0b1d
StepHypRef Expression
1 mullt0b1d.a . . . 4 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ ℝ)
3 mullt0b1d.b . . . 4 (𝜑𝐵 ∈ ℝ)
43adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
5 mullt0b1d.1 . . . 4 (𝜑𝐴 < 0)
65adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0)
7 simpr 484 . . 3 ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐵)
82, 4, 6, 7mulltgt0d 42515 . 2 ((𝜑 ∧ 0 < 𝐵) → (𝐴 · 𝐵) < 0)
95lt0ne0d 11677 . . . . . . . . . 10 (𝜑𝐴 ≠ 0)
101, 9sn-rereccld 42481 . . . . . . . . 9 (𝜑 → (1 / 𝐴) ∈ ℝ)
111, 3remulcld 11137 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
1210, 11remulneg2d 42448 . . . . . . . 8 (𝜑 → ((1 / 𝐴) · (0 − (𝐴 · 𝐵))) = (0 − ((1 / 𝐴) · (𝐴 · 𝐵))))
131, 9rerecid2 42483 . . . . . . . . . . 11 (𝜑 → ((1 / 𝐴) · 𝐴) = 1)
1413oveq1d 7356 . . . . . . . . . 10 (𝜑 → (((1 / 𝐴) · 𝐴) · 𝐵) = (1 · 𝐵))
1510recnd 11135 . . . . . . . . . . 11 (𝜑 → (1 / 𝐴) ∈ ℂ)
161recnd 11135 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
173recnd 11135 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
1815, 16, 17mulassd 11130 . . . . . . . . . 10 (𝜑 → (((1 / 𝐴) · 𝐴) · 𝐵) = ((1 / 𝐴) · (𝐴 · 𝐵)))
19 remullid 42467 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (1 · 𝐵) = 𝐵)
203, 19syl 17 . . . . . . . . . 10 (𝜑 → (1 · 𝐵) = 𝐵)
2114, 18, 203eqtr3d 2774 . . . . . . . . 9 (𝜑 → ((1 / 𝐴) · (𝐴 · 𝐵)) = 𝐵)
2221oveq2d 7357 . . . . . . . 8 (𝜑 → (0 − ((1 / 𝐴) · (𝐴 · 𝐵))) = (0 − 𝐵))
2312, 22eqtrd 2766 . . . . . . 7 (𝜑 → ((1 / 𝐴) · (0 − (𝐴 · 𝐵))) = (0 − 𝐵))
2423adantr 480 . . . . . 6 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → ((1 / 𝐴) · (0 − (𝐴 · 𝐵))) = (0 − 𝐵))
2510adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → (1 / 𝐴) ∈ ℝ)
26 rernegcl 42404 . . . . . . . . 9 ((𝐴 · 𝐵) ∈ ℝ → (0 − (𝐴 · 𝐵)) ∈ ℝ)
2711, 26syl 17 . . . . . . . 8 (𝜑 → (0 − (𝐴 · 𝐵)) ∈ ℝ)
2827adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → (0 − (𝐴 · 𝐵)) ∈ ℝ)
291, 5sn-reclt0d 42514 . . . . . . . 8 (𝜑 → (1 / 𝐴) < 0)
3029adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → (1 / 𝐴) < 0)
31 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → 0 < (0 − (𝐴 · 𝐵)))
3225, 28, 30, 31mulltgt0d 42515 . . . . . 6 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → ((1 / 𝐴) · (0 − (𝐴 · 𝐵))) < 0)
3324, 32eqbrtrrd 5110 . . . . 5 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → (0 − 𝐵) < 0)
3433ex 412 . . . 4 (𝜑 → (0 < (0 − (𝐴 · 𝐵)) → (0 − 𝐵) < 0))
35 relt0neg1 42489 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ → ((𝐴 · 𝐵) < 0 ↔ 0 < (0 − (𝐴 · 𝐵))))
3611, 35syl 17 . . . 4 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ 0 < (0 − (𝐴 · 𝐵))))
37 relt0neg2 42490 . . . . 5 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ (0 − 𝐵) < 0))
383, 37syl 17 . . . 4 (𝜑 → (0 < 𝐵 ↔ (0 − 𝐵) < 0))
3934, 36, 383imtr4d 294 . . 3 (𝜑 → ((𝐴 · 𝐵) < 0 → 0 < 𝐵))
4039imp 406 . 2 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 0 < 𝐵)
418, 40impbida 800 1 (𝜑 → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5086  (class class class)co 7341  cr 11000  0cc0 11001  1c1 11002   · cmul 11006   < clt 11141   cresub 42398   / crediv 42473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-2 12183  df-3 12184  df-resub 42399  df-rediv 42474
This theorem is referenced by:  mullt0b2d  42517  sn-mullt0d  42518
  Copyright terms: Public domain W3C validator