Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mullt0b1d Structured version   Visualization version   GIF version

Theorem mullt0b1d 42444
Description: When the first term is negative, the second term is positive iff the product is negative. (Contributed by SN, 26-Nov-2025.)
Hypotheses
Ref Expression
mullt0b1d.a (𝜑𝐴 ∈ ℝ)
mullt0b1d.b (𝜑𝐵 ∈ ℝ)
mullt0b1d.1 (𝜑𝐴 < 0)
Assertion
Ref Expression
mullt0b1d (𝜑 → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0))

Proof of Theorem mullt0b1d
StepHypRef Expression
1 mullt0b1d.a . . . 4 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ ℝ)
3 mullt0b1d.b . . . 4 (𝜑𝐵 ∈ ℝ)
43adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
5 mullt0b1d.1 . . . 4 (𝜑𝐴 < 0)
65adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0)
7 simpr 484 . . 3 ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐵)
82, 4, 6, 7mulltgt0d 42443 . 2 ((𝜑 ∧ 0 < 𝐵) → (𝐴 · 𝐵) < 0)
95lt0ne0d 11719 . . . . . . . . . 10 (𝜑𝐴 ≠ 0)
101, 9sn-rereccld 42409 . . . . . . . . 9 (𝜑 → (1 / 𝐴) ∈ ℝ)
111, 3remulcld 11180 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
1210, 11remulneg2d 42376 . . . . . . . 8 (𝜑 → ((1 / 𝐴) · (0 − (𝐴 · 𝐵))) = (0 − ((1 / 𝐴) · (𝐴 · 𝐵))))
131, 9rerecid2 42411 . . . . . . . . . . 11 (𝜑 → ((1 / 𝐴) · 𝐴) = 1)
1413oveq1d 7384 . . . . . . . . . 10 (𝜑 → (((1 / 𝐴) · 𝐴) · 𝐵) = (1 · 𝐵))
1510recnd 11178 . . . . . . . . . . 11 (𝜑 → (1 / 𝐴) ∈ ℂ)
161recnd 11178 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
173recnd 11178 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
1815, 16, 17mulassd 11173 . . . . . . . . . 10 (𝜑 → (((1 / 𝐴) · 𝐴) · 𝐵) = ((1 / 𝐴) · (𝐴 · 𝐵)))
19 remullid 42395 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (1 · 𝐵) = 𝐵)
203, 19syl 17 . . . . . . . . . 10 (𝜑 → (1 · 𝐵) = 𝐵)
2114, 18, 203eqtr3d 2772 . . . . . . . . 9 (𝜑 → ((1 / 𝐴) · (𝐴 · 𝐵)) = 𝐵)
2221oveq2d 7385 . . . . . . . 8 (𝜑 → (0 − ((1 / 𝐴) · (𝐴 · 𝐵))) = (0 − 𝐵))
2312, 22eqtrd 2764 . . . . . . 7 (𝜑 → ((1 / 𝐴) · (0 − (𝐴 · 𝐵))) = (0 − 𝐵))
2423adantr 480 . . . . . 6 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → ((1 / 𝐴) · (0 − (𝐴 · 𝐵))) = (0 − 𝐵))
2510adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → (1 / 𝐴) ∈ ℝ)
26 rernegcl 42332 . . . . . . . . 9 ((𝐴 · 𝐵) ∈ ℝ → (0 − (𝐴 · 𝐵)) ∈ ℝ)
2711, 26syl 17 . . . . . . . 8 (𝜑 → (0 − (𝐴 · 𝐵)) ∈ ℝ)
2827adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → (0 − (𝐴 · 𝐵)) ∈ ℝ)
291, 5sn-reclt0d 42442 . . . . . . . 8 (𝜑 → (1 / 𝐴) < 0)
3029adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → (1 / 𝐴) < 0)
31 simpr 484 . . . . . . 7 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → 0 < (0 − (𝐴 · 𝐵)))
3225, 28, 30, 31mulltgt0d 42443 . . . . . 6 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → ((1 / 𝐴) · (0 − (𝐴 · 𝐵))) < 0)
3324, 32eqbrtrrd 5126 . . . . 5 ((𝜑 ∧ 0 < (0 − (𝐴 · 𝐵))) → (0 − 𝐵) < 0)
3433ex 412 . . . 4 (𝜑 → (0 < (0 − (𝐴 · 𝐵)) → (0 − 𝐵) < 0))
35 relt0neg1 42417 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ → ((𝐴 · 𝐵) < 0 ↔ 0 < (0 − (𝐴 · 𝐵))))
3611, 35syl 17 . . . 4 (𝜑 → ((𝐴 · 𝐵) < 0 ↔ 0 < (0 − (𝐴 · 𝐵))))
37 relt0neg2 42418 . . . . 5 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ (0 − 𝐵) < 0))
383, 37syl 17 . . . 4 (𝜑 → (0 < 𝐵 ↔ (0 − 𝐵) < 0))
3934, 36, 383imtr4d 294 . . 3 (𝜑 → ((𝐴 · 𝐵) < 0 → 0 < 𝐵))
4039imp 406 . 2 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 0 < 𝐵)
418, 40impbida 800 1 (𝜑 → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184   cresub 42326   / crediv 42401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-2 12225  df-3 12226  df-resub 42327  df-rediv 42402
This theorem is referenced by:  mullt0b2d  42445  sn-mullt0d  42446
  Copyright terms: Public domain W3C validator