Proof of Theorem mullt0b1d
| Step | Hyp | Ref
| Expression |
| 1 | | mullt0b1d.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ ℝ) |
| 3 | | mullt0b1d.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 4 | 3 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℝ) |
| 5 | | mullt0b1d.1 |
. . . 4
⊢ (𝜑 → 𝐴 < 0) |
| 6 | 5 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0) |
| 7 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐵) |
| 8 | 2, 4, 6, 7 | mulltgt0d 42465 |
. 2
⊢ ((𝜑 ∧ 0 < 𝐵) → (𝐴 · 𝐵) < 0) |
| 9 | 5 | lt0ne0d 11749 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ≠ 0) |
| 10 | 1, 9 | sn-rereccld 42431 |
. . . . . . . . 9
⊢ (𝜑 → (1 /ℝ
𝐴) ∈
ℝ) |
| 11 | 1, 3 | remulcld 11210 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
| 12 | 10, 11 | remulneg2d 42398 |
. . . . . . . 8
⊢ (𝜑 → ((1 /ℝ
𝐴) · (0
−ℝ (𝐴 · 𝐵))) = (0 −ℝ ((1
/ℝ 𝐴)
· (𝐴 · 𝐵)))) |
| 13 | 1, 9 | rerecid2 42433 |
. . . . . . . . . . 11
⊢ (𝜑 → ((1 /ℝ
𝐴) · 𝐴) = 1) |
| 14 | 13 | oveq1d 7404 |
. . . . . . . . . 10
⊢ (𝜑 → (((1 /ℝ
𝐴) · 𝐴) · 𝐵) = (1 · 𝐵)) |
| 15 | 10 | recnd 11208 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 /ℝ
𝐴) ∈
ℂ) |
| 16 | 1 | recnd 11208 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 17 | 3 | recnd 11208 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 18 | 15, 16, 17 | mulassd 11203 |
. . . . . . . . . 10
⊢ (𝜑 → (((1 /ℝ
𝐴) · 𝐴) · 𝐵) = ((1 /ℝ 𝐴) · (𝐴 · 𝐵))) |
| 19 | | remullid 42417 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℝ → (1
· 𝐵) = 𝐵) |
| 20 | 3, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
| 21 | 14, 18, 20 | 3eqtr3d 2773 |
. . . . . . . . 9
⊢ (𝜑 → ((1 /ℝ
𝐴) · (𝐴 · 𝐵)) = 𝐵) |
| 22 | 21 | oveq2d 7405 |
. . . . . . . 8
⊢ (𝜑 → (0
−ℝ ((1 /ℝ 𝐴) · (𝐴 · 𝐵))) = (0 −ℝ 𝐵)) |
| 23 | 12, 22 | eqtrd 2765 |
. . . . . . 7
⊢ (𝜑 → ((1 /ℝ
𝐴) · (0
−ℝ (𝐴 · 𝐵))) = (0 −ℝ 𝐵)) |
| 24 | 23 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (0
−ℝ (𝐴 · 𝐵))) → ((1 /ℝ 𝐴) · (0
−ℝ (𝐴 · 𝐵))) = (0 −ℝ 𝐵)) |
| 25 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (0
−ℝ (𝐴 · 𝐵))) → (1 /ℝ 𝐴) ∈
ℝ) |
| 26 | | rernegcl 42354 |
. . . . . . . . 9
⊢ ((𝐴 · 𝐵) ∈ ℝ → (0
−ℝ (𝐴 · 𝐵)) ∈ ℝ) |
| 27 | 11, 26 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0
−ℝ (𝐴 · 𝐵)) ∈ ℝ) |
| 28 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (0
−ℝ (𝐴 · 𝐵))) → (0 −ℝ
(𝐴 · 𝐵)) ∈
ℝ) |
| 29 | 1, 5 | sn-reclt0d 42464 |
. . . . . . . 8
⊢ (𝜑 → (1 /ℝ
𝐴) < 0) |
| 30 | 29 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (0
−ℝ (𝐴 · 𝐵))) → (1 /ℝ 𝐴) < 0) |
| 31 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 0 < (0
−ℝ (𝐴 · 𝐵))) → 0 < (0
−ℝ (𝐴 · 𝐵))) |
| 32 | 25, 28, 30, 31 | mulltgt0d 42465 |
. . . . . 6
⊢ ((𝜑 ∧ 0 < (0
−ℝ (𝐴 · 𝐵))) → ((1 /ℝ 𝐴) · (0
−ℝ (𝐴 · 𝐵))) < 0) |
| 33 | 24, 32 | eqbrtrrd 5133 |
. . . . 5
⊢ ((𝜑 ∧ 0 < (0
−ℝ (𝐴 · 𝐵))) → (0 −ℝ
𝐵) < 0) |
| 34 | 33 | ex 412 |
. . . 4
⊢ (𝜑 → (0 < (0
−ℝ (𝐴 · 𝐵)) → (0 −ℝ 𝐵) < 0)) |
| 35 | | relt0neg1 42439 |
. . . . 5
⊢ ((𝐴 · 𝐵) ∈ ℝ → ((𝐴 · 𝐵) < 0 ↔ 0 < (0
−ℝ (𝐴 · 𝐵)))) |
| 36 | 11, 35 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ 0 < (0
−ℝ (𝐴 · 𝐵)))) |
| 37 | | relt0neg2 42440 |
. . . . 5
⊢ (𝐵 ∈ ℝ → (0 <
𝐵 ↔ (0
−ℝ 𝐵) < 0)) |
| 38 | 3, 37 | syl 17 |
. . . 4
⊢ (𝜑 → (0 < 𝐵 ↔ (0 −ℝ 𝐵) < 0)) |
| 39 | 34, 36, 38 | 3imtr4d 294 |
. . 3
⊢ (𝜑 → ((𝐴 · 𝐵) < 0 → 0 < 𝐵)) |
| 40 | 39 | imp 406 |
. 2
⊢ ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 0 < 𝐵) |
| 41 | 8, 40 | impbida 800 |
1
⊢ (𝜑 → (0 < 𝐵 ↔ (𝐴 · 𝐵) < 0)) |