| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mulltgt0d | Structured version Visualization version GIF version | ||
| Description: Negative times positive is negative. (Contributed by SN, 26-Nov-2025.) |
| Ref | Expression |
|---|---|
| mullt0b1d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| mullt0b1d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mullt0b1d.1 | ⊢ (𝜑 → 𝐴 < 0) |
| mulltgt0d.2 | ⊢ (𝜑 → 0 < 𝐵) |
| Ref | Expression |
|---|---|
| mulltgt0d | ⊢ (𝜑 → (𝐴 · 𝐵) < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mullt0b1d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 < 0) | |
| 2 | 1 | lt0ne0d 11719 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 3 | mulltgt0d.2 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝐵) | |
| 4 | 3 | gt0ne0d 11718 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 0) |
| 5 | 2, 4 | jca 511 | . . . . 5 ⊢ (𝜑 → (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) |
| 6 | neanior 3018 | . . . . 5 ⊢ ((𝐴 ≠ 0 ∧ 𝐵 ≠ 0) ↔ ¬ (𝐴 = 0 ∨ 𝐵 = 0)) | |
| 7 | 5, 6 | sylib 218 | . . . 4 ⊢ (𝜑 → ¬ (𝐴 = 0 ∨ 𝐵 = 0)) |
| 8 | mullt0b1d.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | mullt0b1d.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 10 | 8, 9 | sn-remul0ord 42369 | . . . 4 ⊢ (𝜑 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0))) |
| 11 | 7, 10 | mtbird 325 | . . 3 ⊢ (𝜑 → ¬ (𝐴 · 𝐵) = 0) |
| 12 | 0red 11153 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 13 | 8, 12, 1 | ltnsymd 11299 | . . . 4 ⊢ (𝜑 → ¬ 0 < 𝐴) |
| 14 | 8, 9, 3 | mulgt0b2d 42439 | . . . 4 ⊢ (𝜑 → (0 < 𝐴 ↔ 0 < (𝐴 · 𝐵))) |
| 15 | 13, 14 | mtbid 324 | . . 3 ⊢ (𝜑 → ¬ 0 < (𝐴 · 𝐵)) |
| 16 | ioran 985 | . . 3 ⊢ (¬ ((𝐴 · 𝐵) = 0 ∨ 0 < (𝐴 · 𝐵)) ↔ (¬ (𝐴 · 𝐵) = 0 ∧ ¬ 0 < (𝐴 · 𝐵))) | |
| 17 | 11, 15, 16 | sylanbrc 583 | . 2 ⊢ (𝜑 → ¬ ((𝐴 · 𝐵) = 0 ∨ 0 < (𝐴 · 𝐵))) |
| 18 | 8, 9 | remulcld 11180 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
| 19 | 18, 12 | lttrid 11288 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) < 0 ↔ ¬ ((𝐴 · 𝐵) = 0 ∨ 0 < (𝐴 · 𝐵)))) |
| 20 | 17, 19 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) < 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 · cmul 11049 < clt 11184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-2 12225 df-3 12226 df-resub 42327 df-rediv 42402 |
| This theorem is referenced by: mullt0b1d 42444 |
| Copyright terms: Public domain | W3C validator |