| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trljat3 | Structured version Visualization version GIF version | ||
| Description: The value of a translation of an atom 𝑃 not under the fiducial co-atom 𝑊, joined with trace. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 22-May-2012.) |
| Ref | Expression |
|---|---|
| trljat.l | ⊢ ≤ = (le‘𝐾) |
| trljat.j | ⊢ ∨ = (join‘𝐾) |
| trljat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| trljat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trljat.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trljat.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trljat3 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝐹)) = ((𝐹‘𝑃) ∨ (𝑅‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trljat.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | trljat.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | trljat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | trljat.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | trljat.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | trljat.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | trljat1 40275 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝐹)) = (𝑃 ∨ (𝐹‘𝑃))) |
| 8 | 1, 2, 3, 4, 5, 6 | trljat2 40276 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) ∨ (𝑅‘𝐹)) = (𝑃 ∨ (𝐹‘𝑃))) |
| 9 | 7, 8 | eqtr4d 2769 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝐹)) = ((𝐹‘𝑃) ∨ (𝑅‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 lecple 17168 joincjn 18217 Atomscatm 39372 HLchlt 39459 LHypclh 40093 LTrncltrn 40210 trLctrl 40267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 |
| This theorem is referenced by: trlcoabs 40830 cdlemk1 40940 cdlemk2 40941 cdlemk1u 40968 cdlemkfid1N 41030 cdlemkid1 41031 |
| Copyright terms: Public domain | W3C validator |