MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniimadomf Structured version   Visualization version   GIF version

Theorem uniimadomf 10583
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 10582 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.)
Hypotheses
Ref Expression
uniimadomf.1 𝑥𝐹
uniimadomf.2 𝐴 ∈ V
uniimadomf.3 𝐵 ∈ V
Assertion
Ref Expression
uniimadomf ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem uniimadomf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1912 . . 3 𝑧(𝐹𝑥) ≼ 𝐵
2 uniimadomf.1 . . . . 5 𝑥𝐹
3 nfcv 2903 . . . . 5 𝑥𝑧
42, 3nffv 6917 . . . 4 𝑥(𝐹𝑧)
5 nfcv 2903 . . . 4 𝑥
6 nfcv 2903 . . . 4 𝑥𝐵
74, 5, 6nfbr 5195 . . 3 𝑥(𝐹𝑧) ≼ 𝐵
8 fveq2 6907 . . . 4 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
98breq1d 5158 . . 3 (𝑥 = 𝑧 → ((𝐹𝑥) ≼ 𝐵 ↔ (𝐹𝑧) ≼ 𝐵))
101, 7, 9cbvralw 3304 . 2 (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵 ↔ ∀𝑧𝐴 (𝐹𝑧) ≼ 𝐵)
11 uniimadomf.2 . . 3 𝐴 ∈ V
12 uniimadomf.3 . . 3 𝐵 ∈ V
1311, 12uniimadom 10582 . 2 ((Fun 𝐹 ∧ ∀𝑧𝐴 (𝐹𝑧) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
1410, 13sylan2b 594 1 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wnfc 2888  wral 3059  Vcvv 3478   cuni 4912   class class class wbr 5148   × cxp 5687  cima 5692  Fun wfun 6557  cfv 6563  cdom 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-ac2 10501
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-card 9977  df-acn 9980  df-ac 10154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator