| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniimadomf | Structured version Visualization version GIF version | ||
| Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 10473 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) |
| Ref | Expression |
|---|---|
| uniimadomf.1 | ⊢ Ⅎ𝑥𝐹 |
| uniimadomf.2 | ⊢ 𝐴 ∈ V |
| uniimadomf.3 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| uniimadomf | ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) ≼ 𝐵 | |
| 2 | uniimadomf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 4 | 2, 3 | nffv 6850 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 5 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥 ≼ | |
| 6 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 4, 5, 6 | nfbr 5149 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) ≼ 𝐵 |
| 8 | fveq2 6840 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
| 9 | 8 | breq1d 5112 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ≼ 𝐵 ↔ (𝐹‘𝑧) ≼ 𝐵)) |
| 10 | 1, 7, 9 | cbvralw 3278 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 ↔ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ≼ 𝐵) |
| 11 | uniimadomf.2 | . . 3 ⊢ 𝐴 ∈ V | |
| 12 | uniimadomf.3 | . . 3 ⊢ 𝐵 ∈ V | |
| 13 | 11, 12 | uniimadom 10473 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
| 14 | 10, 13 | sylan2b 594 | 1 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 Vcvv 3444 ∪ cuni 4867 class class class wbr 5102 × cxp 5629 “ cima 5634 Fun wfun 6493 ‘cfv 6499 ≼ cdom 8893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-ac2 10392 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-card 9868 df-acn 9871 df-ac 10045 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |