![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniimadomf | Structured version Visualization version GIF version |
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 10582 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) |
Ref | Expression |
---|---|
uniimadomf.1 | ⊢ Ⅎ𝑥𝐹 |
uniimadomf.2 | ⊢ 𝐴 ∈ V |
uniimadomf.3 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniimadomf | ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1912 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) ≼ 𝐵 | |
2 | uniimadomf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
4 | 2, 3 | nffv 6917 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
5 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥 ≼ | |
6 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 4, 5, 6 | nfbr 5195 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) ≼ 𝐵 |
8 | fveq2 6907 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
9 | 8 | breq1d 5158 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ≼ 𝐵 ↔ (𝐹‘𝑧) ≼ 𝐵)) |
10 | 1, 7, 9 | cbvralw 3304 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 ↔ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ≼ 𝐵) |
11 | uniimadomf.2 | . . 3 ⊢ 𝐴 ∈ V | |
12 | uniimadomf.3 | . . 3 ⊢ 𝐵 ∈ V | |
13 | 11, 12 | uniimadom 10582 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
14 | 10, 13 | sylan2b 594 | 1 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 Ⅎwnfc 2888 ∀wral 3059 Vcvv 3478 ∪ cuni 4912 class class class wbr 5148 × cxp 5687 “ cima 5692 Fun wfun 6557 ‘cfv 6563 ≼ cdom 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-ac2 10501 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-card 9977 df-acn 9980 df-ac 10154 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |