MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniimadomf Structured version   Visualization version   GIF version

Theorem uniimadomf 10543
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 10542 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.)
Hypotheses
Ref Expression
uniimadomf.1 𝑥𝐹
uniimadomf.2 𝐴 ∈ V
uniimadomf.3 𝐵 ∈ V
Assertion
Ref Expression
uniimadomf ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem uniimadomf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1916 . . 3 𝑧(𝐹𝑥) ≼ 𝐵
2 uniimadomf.1 . . . . 5 𝑥𝐹
3 nfcv 2902 . . . . 5 𝑥𝑧
42, 3nffv 6902 . . . 4 𝑥(𝐹𝑧)
5 nfcv 2902 . . . 4 𝑥
6 nfcv 2902 . . . 4 𝑥𝐵
74, 5, 6nfbr 5196 . . 3 𝑥(𝐹𝑧) ≼ 𝐵
8 fveq2 6892 . . . 4 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
98breq1d 5159 . . 3 (𝑥 = 𝑧 → ((𝐹𝑥) ≼ 𝐵 ↔ (𝐹𝑧) ≼ 𝐵))
101, 7, 9cbvralw 3302 . 2 (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵 ↔ ∀𝑧𝐴 (𝐹𝑧) ≼ 𝐵)
11 uniimadomf.2 . . 3 𝐴 ∈ V
12 uniimadomf.3 . . 3 𝐵 ∈ V
1311, 12uniimadom 10542 . 2 ((Fun 𝐹 ∧ ∀𝑧𝐴 (𝐹𝑧) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
1410, 13sylan2b 593 1 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wnfc 2882  wral 3060  Vcvv 3473   cuni 4909   class class class wbr 5149   × cxp 5675  cima 5680  Fun wfun 6538  cfv 6544  cdom 8940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-ac2 10461
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-er 8706  df-map 8825  df-en 8943  df-dom 8944  df-card 9937  df-acn 9940  df-ac 10114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator