| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniimadomf | Structured version Visualization version GIF version | ||
| Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 10497 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) |
| Ref | Expression |
|---|---|
| uniimadomf.1 | ⊢ Ⅎ𝑥𝐹 |
| uniimadomf.2 | ⊢ 𝐴 ∈ V |
| uniimadomf.3 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| uniimadomf | ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) ≼ 𝐵 | |
| 2 | uniimadomf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 4 | 2, 3 | nffv 6868 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 5 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥 ≼ | |
| 6 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 4, 5, 6 | nfbr 5154 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) ≼ 𝐵 |
| 8 | fveq2 6858 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
| 9 | 8 | breq1d 5117 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ≼ 𝐵 ↔ (𝐹‘𝑧) ≼ 𝐵)) |
| 10 | 1, 7, 9 | cbvralw 3280 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 ↔ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ≼ 𝐵) |
| 11 | uniimadomf.2 | . . 3 ⊢ 𝐴 ∈ V | |
| 12 | uniimadomf.3 | . . 3 ⊢ 𝐵 ∈ V | |
| 13 | 11, 12 | uniimadom 10497 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
| 14 | 10, 13 | sylan2b 594 | 1 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 Vcvv 3447 ∪ cuni 4871 class class class wbr 5107 × cxp 5636 “ cima 5641 Fun wfun 6505 ‘cfv 6511 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-card 9892 df-acn 9895 df-ac 10069 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |