![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniimadomf | Structured version Visualization version GIF version |
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 10542 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) |
Ref | Expression |
---|---|
uniimadomf.1 | ⊢ Ⅎ𝑥𝐹 |
uniimadomf.2 | ⊢ 𝐴 ∈ V |
uniimadomf.3 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniimadomf | ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1916 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) ≼ 𝐵 | |
2 | uniimadomf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
4 | 2, 3 | nffv 6902 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
5 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑥 ≼ | |
6 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 4, 5, 6 | nfbr 5196 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) ≼ 𝐵 |
8 | fveq2 6892 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
9 | 8 | breq1d 5159 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ≼ 𝐵 ↔ (𝐹‘𝑧) ≼ 𝐵)) |
10 | 1, 7, 9 | cbvralw 3302 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 ↔ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ≼ 𝐵) |
11 | uniimadomf.2 | . . 3 ⊢ 𝐴 ∈ V | |
12 | uniimadomf.3 | . . 3 ⊢ 𝐵 ∈ V | |
13 | 11, 12 | uniimadom 10542 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
14 | 10, 13 | sylan2b 593 | 1 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 Ⅎwnfc 2882 ∀wral 3060 Vcvv 3473 ∪ cuni 4909 class class class wbr 5149 × cxp 5675 “ cima 5680 Fun wfun 6538 ‘cfv 6544 ≼ cdom 8940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-ac2 10461 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-card 9937 df-acn 9940 df-ac 10114 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |