| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniimadomf | Structured version Visualization version GIF version | ||
| Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 10435 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) |
| Ref | Expression |
|---|---|
| uniimadomf.1 | ⊢ Ⅎ𝑥𝐹 |
| uniimadomf.2 | ⊢ 𝐴 ∈ V |
| uniimadomf.3 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| uniimadomf | ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . . 3 ⊢ Ⅎ𝑧(𝐹‘𝑥) ≼ 𝐵 | |
| 2 | uniimadomf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 4 | 2, 3 | nffv 6832 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 5 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥 ≼ | |
| 6 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 4, 5, 6 | nfbr 5136 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑧) ≼ 𝐵 |
| 8 | fveq2 6822 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | |
| 9 | 8 | breq1d 5099 | . . 3 ⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ≼ 𝐵 ↔ (𝐹‘𝑧) ≼ 𝐵)) |
| 10 | 1, 7, 9 | cbvralw 3274 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 ↔ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ≼ 𝐵) |
| 11 | uniimadomf.2 | . . 3 ⊢ 𝐴 ∈ V | |
| 12 | uniimadomf.3 | . . 3 ⊢ 𝐵 ∈ V | |
| 13 | 11, 12 | uniimadom 10435 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
| 14 | 10, 13 | sylan2b 594 | 1 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 Vcvv 3436 ∪ cuni 4856 class class class wbr 5089 × cxp 5612 “ cima 5617 Fun wfun 6475 ‘cfv 6481 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-card 9832 df-acn 9835 df-ac 10007 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |