![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsupcl | Structured version Visualization version GIF version |
Description: Closure of the subspace supremum of set of subsets of Hilbert space. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsupcl | β’ (π΄ β π« β β (spanββͺ π΄) β Sβ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 4918 | . . 3 β’ (π΄ β π« β β βͺ π΄ β βͺ π« β) | |
2 | unipw 5454 | . . 3 β’ βͺ π« β = β | |
3 | 1, 2 | sseqtrdi 4030 | . 2 β’ (π΄ β π« β β βͺ π΄ β β) |
4 | spancl 31164 | . 2 β’ (βͺ π΄ β β β (spanββͺ π΄) β Sβ ) | |
5 | 3, 4 | syl 17 | 1 β’ (π΄ β π« β β (spanββͺ π΄) β Sβ ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 β wss 3947 π« cpw 4604 βͺ cuni 4910 βcfv 6551 βchba 30747 Sβ csh 30756 spancspn 30760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 ax-addf 11223 ax-mulf 11224 ax-hilex 30827 ax-hfvadd 30828 ax-hvcom 30829 ax-hvass 30830 ax-hv0cl 30831 ax-hvaddid 30832 ax-hfvmul 30833 ax-hvmulid 30834 ax-hvmulass 30835 ax-hvdistr1 30836 ax-hvdistr2 30837 ax-hvmul0 30838 ax-hfi 30907 ax-his1 30910 ax-his2 30911 ax-his3 30912 ax-his4 30913 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-map 8851 df-pm 8852 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9471 df-inf 9472 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-n0 12509 df-z 12595 df-uz 12859 df-q 12969 df-rp 13013 df-xneg 13130 df-xadd 13131 df-xmul 13132 df-icc 13369 df-seq 14005 df-exp 14065 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-topgen 17430 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-top 22814 df-topon 22831 df-bases 22867 df-lm 23151 df-haus 23237 df-grpo 30321 df-gid 30322 df-ginv 30323 df-gdiv 30324 df-ablo 30373 df-vc 30387 df-nv 30420 df-va 30423 df-ba 30424 df-sm 30425 df-0v 30426 df-vs 30427 df-nmcv 30428 df-ims 30429 df-hnorm 30796 df-hvsub 30799 df-hlim 30800 df-sh 31035 df-ch 31049 df-ch0 31081 df-span 31137 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |