Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xraddge02 Structured version   Visualization version   GIF version

Theorem xraddge02 32763
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 28-Dec-2016.)
Assertion
Ref Expression
xraddge02 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵𝐴 ≤ (𝐴 +𝑒 𝐵)))

Proof of Theorem xraddge02
StepHypRef Expression
1 xrleid 13213 . . . 4 (𝐴 ∈ ℝ*𝐴𝐴)
21adantr 480 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴𝐴)
3 simpl 482 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
4 0xr 11337 . . . . 5 0 ∈ ℝ*
53, 4jctir 520 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*))
6 xle2add 13321 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝐴𝐴 ∧ 0 ≤ 𝐵) → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)))
75, 6mpancom 687 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐴 ∧ 0 ≤ 𝐵) → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)))
82, 7mpand 694 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)))
9 xaddrid 13303 . . . 4 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
109breq1d 5176 . . 3 (𝐴 ∈ ℝ* → ((𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐴 +𝑒 𝐵)))
1110adantr 480 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐴 +𝑒 𝐵)))
128, 11sylibd 239 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵𝐴 ≤ (𝐴 +𝑒 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5166  (class class class)co 7448  0cc0 11184  *cxr 11323  cle 11325   +𝑒 cxad 13173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-xadd 13176
This theorem is referenced by:  xrge0addge  32764  esummono  34018  esumle  34022  gsumesum  34023  esumlef  34026  measssd  34179  measunl  34180  carsgsigalem  34280
  Copyright terms: Public domain W3C validator