Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xraddge02 Structured version   Visualization version   GIF version

Theorem xraddge02 30799
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 28-Dec-2016.)
Assertion
Ref Expression
xraddge02 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵𝐴 ≤ (𝐴 +𝑒 𝐵)))

Proof of Theorem xraddge02
StepHypRef Expression
1 xrleid 12741 . . . 4 (𝐴 ∈ ℝ*𝐴𝐴)
21adantr 484 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴𝐴)
3 simpl 486 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
4 0xr 10880 . . . . 5 0 ∈ ℝ*
53, 4jctir 524 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*))
6 xle2add 12849 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝐴𝐴 ∧ 0 ≤ 𝐵) → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)))
75, 6mpancom 688 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐴 ∧ 0 ≤ 𝐵) → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)))
82, 7mpand 695 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)))
9 xaddid1 12831 . . . 4 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
109breq1d 5063 . . 3 (𝐴 ∈ ℝ* → ((𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐴 +𝑒 𝐵)))
1110adantr 484 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐴 +𝑒 𝐵)))
128, 11sylibd 242 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵𝐴 ≤ (𝐴 +𝑒 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2110   class class class wbr 5053  (class class class)co 7213  0cc0 10729  *cxr 10866  cle 10868   +𝑒 cxad 12702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-xadd 12705
This theorem is referenced by:  xrge0addge  30800  esummono  31734  esumle  31738  gsumesum  31739  esumlef  31742  measssd  31895  measunl  31896  carsgsigalem  31994
  Copyright terms: Public domain W3C validator