ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0sgmppw Unicode version

Theorem 0sgmppw 15535
Description: A prime power  P ^ K has  K  +  1 divisors. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
0sgmppw  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  (
0  sigma  ( P ^ K ) )  =  ( K  +  1 ) )

Proof of Theorem 0sgmppw
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmnn 12502 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
2 nnexpcl 10714 . . . . 5  |-  ( ( P  e.  NN  /\  K  e.  NN0 )  -> 
( P ^ K
)  e.  NN )
31, 2sylan 283 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  ( P ^ K )  e.  NN )
4 0sgm 15527 . . . 4  |-  ( ( P ^ K )  e.  NN  ->  (
0  sigma  ( P ^ K ) )  =  ( `  { x  e.  NN  |  x  ||  ( P ^ K ) } ) )
53, 4syl 14 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  (
0  sigma  ( P ^ K ) )  =  ( `  { x  e.  NN  |  x  ||  ( P ^ K ) } ) )
6 0zd 9399 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  0  e.  ZZ )
7 nn0z 9407 . . . . . 6  |-  ( K  e.  NN0  ->  K  e.  ZZ )
87adantl 277 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  K  e.  ZZ )
96, 8fzfigd 10593 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  (
0 ... K )  e. 
Fin )
10 eqid 2206 . . . . 5  |-  ( n  e.  ( 0 ... K )  |->  ( P ^ n ) )  =  ( n  e.  ( 0 ... K
)  |->  ( P ^
n ) )
1110dvdsppwf1o 15531 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  (
n  e.  ( 0 ... K )  |->  ( P ^ n ) ) : ( 0 ... K ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ K ) } )
129, 11fihasheqf1od 10951 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  ( `  ( 0 ... K
) )  =  ( `  { x  e.  NN  |  x  ||  ( P ^ K ) } ) )
135, 12eqtr4d 2242 . 2  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  (
0  sigma  ( P ^ K ) )  =  ( `  ( 0 ... K ) ) )
14 simpr 110 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  K  e.  NN0 )
15 nn0uz 9698 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
1614, 15eleqtrdi 2299 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  K  e.  ( ZZ>= `  0 )
)
17 hashfz 10983 . . 3  |-  ( K  e.  ( ZZ>= `  0
)  ->  ( `  (
0 ... K ) )  =  ( ( K  -  0 )  +  1 ) )
1816, 17syl 14 . 2  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  ( `  ( 0 ... K
) )  =  ( ( K  -  0 )  +  1 ) )
19 nn0cn 9320 . . . . 5  |-  ( K  e.  NN0  ->  K  e.  CC )
2019adantl 277 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  K  e.  CC )
2120subid1d 8387 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  ( K  -  0 )  =  K )
2221oveq1d 5971 . 2  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  (
( K  -  0 )  +  1 )  =  ( K  + 
1 ) )
2313, 18, 223eqtrd 2243 1  |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  (
0  sigma  ( P ^ K ) )  =  ( K  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   {crab 2489   class class class wbr 4050    |-> cmpt 4112   ` cfv 5279  (class class class)co 5956   CCcc 7938   0cc0 7940   1c1 7941    + caddc 7943    - cmin 8258   NNcn 9051   NN0cn0 9310   ZZcz 9387   ZZ>=cuz 9663   ...cfz 10145   ^cexp 10700  ♯chash 10937    || cdvds 12168   Primecprime 12499    sigma csgm 15523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060  ax-pre-suploc 8061  ax-addf 8062  ax-mulf 8063
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-disj 4027  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-isom 5288  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-of 6170  df-1st 6238  df-2nd 6239  df-recs 6403  df-irdg 6468  df-frec 6489  df-1o 6514  df-2o 6515  df-oadd 6518  df-er 6632  df-map 6749  df-pm 6750  df-en 6840  df-dom 6841  df-fin 6842  df-sup 7100  df-inf 7101  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-xnn0 9374  df-z 9388  df-uz 9664  df-q 9756  df-rp 9791  df-xneg 9909  df-xadd 9910  df-ioo 10029  df-ico 10031  df-icc 10032  df-fz 10146  df-fzo 10280  df-fl 10430  df-mod 10485  df-seqfrec 10610  df-exp 10701  df-fac 10888  df-bc 10910  df-ihash 10938  df-shft 11196  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380  df-clim 11660  df-sumdc 11735  df-ef 12029  df-e 12030  df-dvds 12169  df-gcd 12345  df-prm 12500  df-pc 12678  df-rest 13143  df-topgen 13162  df-psmet 14375  df-xmet 14376  df-met 14377  df-bl 14378  df-mopn 14379  df-top 14540  df-topon 14553  df-bases 14585  df-ntr 14638  df-cn 14730  df-cnp 14731  df-tx 14795  df-cncf 15113  df-limced 15198  df-dvap 15199  df-relog 15400  df-rpcxp 15401  df-sgm 15524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator