![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0sgmppw | GIF version |
Description: A prime power 𝑃↑𝐾 has 𝐾 + 1 divisors. (Contributed by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
0sgmppw | ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (0 σ (𝑃↑𝐾)) = (𝐾 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 12254 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | nnexpcl 10629 | . . . . 5 ⊢ ((𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑃↑𝐾) ∈ ℕ) | |
3 | 1, 2 | sylan 283 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (𝑃↑𝐾) ∈ ℕ) |
4 | 0sgm 15193 | . . . 4 ⊢ ((𝑃↑𝐾) ∈ ℕ → (0 σ (𝑃↑𝐾)) = (♯‘{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐾)})) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (0 σ (𝑃↑𝐾)) = (♯‘{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐾)})) |
6 | 0zd 9335 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → 0 ∈ ℤ) | |
7 | nn0z 9343 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
8 | 7 | adantl 277 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ) |
9 | 6, 8 | fzfigd 10508 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (0...𝐾) ∈ Fin) |
10 | eqid 2196 | . . . . 5 ⊢ (𝑛 ∈ (0...𝐾) ↦ (𝑃↑𝑛)) = (𝑛 ∈ (0...𝐾) ↦ (𝑃↑𝑛)) | |
11 | 10 | dvdsppwf1o 15197 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (𝑛 ∈ (0...𝐾) ↦ (𝑃↑𝑛)):(0...𝐾)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐾)}) |
12 | 9, 11 | fihasheqf1od 10866 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (♯‘(0...𝐾)) = (♯‘{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐾)})) |
13 | 5, 12 | eqtr4d 2232 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (0 σ (𝑃↑𝐾)) = (♯‘(0...𝐾))) |
14 | simpr 110 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
15 | nn0uz 9633 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
16 | 14, 15 | eleqtrdi 2289 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ (ℤ≥‘0)) |
17 | hashfz 10898 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘0) → (♯‘(0...𝐾)) = ((𝐾 − 0) + 1)) | |
18 | 16, 17 | syl 14 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (♯‘(0...𝐾)) = ((𝐾 − 0) + 1)) |
19 | nn0cn 9256 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℂ) | |
20 | 19 | adantl 277 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℂ) |
21 | 20 | subid1d 8324 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (𝐾 − 0) = 𝐾) |
22 | 21 | oveq1d 5937 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → ((𝐾 − 0) + 1) = (𝐾 + 1)) |
23 | 13, 18, 22 | 3eqtrd 2233 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ0) → (0 σ (𝑃↑𝐾)) = (𝐾 + 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {crab 2479 class class class wbr 4033 ↦ cmpt 4094 ‘cfv 5258 (class class class)co 5922 ℂcc 7875 0cc0 7877 1c1 7878 + caddc 7880 − cmin 8195 ℕcn 8987 ℕ0cn0 9246 ℤcz 9323 ℤ≥cuz 9598 ...cfz 10080 ↑cexp 10615 ♯chash 10852 ∥ cdvds 11936 ℙcprime 12251 σ csgm 15189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 ax-arch 7996 ax-caucvg 7997 ax-pre-suploc 7998 ax-addf 7999 ax-mulf 8000 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-2o 6475 df-oadd 6478 df-er 6592 df-map 6709 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7048 df-inf 7049 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-n0 9247 df-xnn0 9310 df-z 9324 df-uz 9599 df-q 9691 df-rp 9726 df-xneg 9844 df-xadd 9845 df-ioo 9964 df-ico 9966 df-icc 9967 df-fz 10081 df-fzo 10215 df-fl 10345 df-mod 10400 df-seqfrec 10525 df-exp 10616 df-fac 10803 df-bc 10825 df-ihash 10853 df-shft 10965 df-cj 10992 df-re 10993 df-im 10994 df-rsqrt 11148 df-abs 11149 df-clim 11428 df-sumdc 11503 df-ef 11797 df-e 11798 df-dvds 11937 df-gcd 12086 df-prm 12252 df-pc 12430 df-rest 12888 df-topgen 12907 df-psmet 14075 df-xmet 14076 df-met 14077 df-bl 14078 df-mopn 14079 df-top 14210 df-topon 14223 df-bases 14255 df-ntr 14308 df-cn 14400 df-cnp 14401 df-tx 14465 df-cncf 14783 df-limced 14868 df-dvap 14869 df-relog 15067 df-rpcxp 15068 df-sgm 15190 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |