ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgmppw Unicode version

Theorem sgmppw 15200
Description: The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
sgmppw  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( P  ^c  A ) ^ k
) )
Distinct variable groups:    A, k    k, N    P, k

Proof of Theorem sgmppw
Dummy variables  i  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  A  e.  CC )
2 simp2 1000 . . . . 5  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  P  e.  Prime )
3 prmnn 12254 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
42, 3syl 14 . . . 4  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  P  e.  NN )
5 simp3 1001 . . . 4  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  N  e.  NN0 )
64, 5nnexpcld 10772 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( P ^ N )  e.  NN )
7 sgmval 15191 . . 3  |-  ( ( A  e.  CC  /\  ( P ^ N )  e.  NN )  -> 
( A  sigma  ( P ^ N ) )  =  sum_ n  e.  {
x  e.  NN  |  x  ||  ( P ^ N ) }  (
n  ^c  A ) )
81, 6, 7syl2anc 411 . 2  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  = 
sum_ n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ( n  ^c  A ) )
9 oveq1 5929 . . 3  |-  ( n  =  ( P ^
k )  ->  (
n  ^c  A )  =  ( ( P ^ k )  ^c  A ) )
10 0zd 9335 . . . 4  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  0  e.  ZZ )
115nn0zd 9443 . . . 4  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  N  e.  ZZ )
1210, 11fzfigd 10508 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  (
0 ... N )  e. 
Fin )
13 eqid 2196 . . . . 5  |-  ( i  e.  ( 0 ... N )  |->  ( P ^ i ) )  =  ( i  e.  ( 0 ... N
)  |->  ( P ^
i ) )
1413dvdsppwf1o 15197 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  NN0 )  ->  (
i  e.  ( 0 ... N )  |->  ( P ^ i ) ) : ( 0 ... N ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ N ) } )
152, 5, 14syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  (
i  e.  ( 0 ... N )  |->  ( P ^ i ) ) : ( 0 ... N ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ N ) } )
16 oveq2 5930 . . . 4  |-  ( i  =  k  ->  ( P ^ i )  =  ( P ^ k
) )
17 simpr 110 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ( 0 ... N
) )
184adantr 276 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  P  e.  NN )
19 elfznn0 10186 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
2019adantl 277 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2118, 20nnexpcld 10772 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P ^ k )  e.  NN )
2213, 16, 17, 21fvmptd3 5655 . . 3  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
( i  e.  ( 0 ... N ) 
|->  ( P ^ i
) ) `  k
)  =  ( P ^ k ) )
23 elrabi 2917 . . . . . 6  |-  ( n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ->  n  e.  NN )
2423adantl 277 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) } )  ->  n  e.  NN )
2524nnrpd 9766 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) } )  ->  n  e.  RR+ )
261adantr 276 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) } )  ->  A  e.  CC )
2725, 26rpcncxpcld 15136 . . 3  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) } )  ->  ( n  ^c  A )  e.  CC )
289, 12, 15, 22, 27fsumf1o 11539 . 2  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  sum_ n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ( n  ^c  A )  =  sum_ k  e.  ( 0 ... N ) ( ( P ^ k
)  ^c  A ) )
2920nn0cnd 9301 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  CC )
301adantr 276 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
3129, 30mulcomd 8046 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
k  x.  A )  =  ( A  x.  k ) )
3231oveq2d 5938 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  ( k  x.  A ) )  =  ( P  ^c  ( A  x.  k ) ) )
3318nnrpd 9766 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  P  e.  RR+ )
3420nn0red 9300 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  RR )
3533, 34, 30cxpmuld 15146 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  ( k  x.  A ) )  =  ( ( P  ^c  k )  ^c  A ) )
3620nn0zd 9443 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
37 cxpexpnn 15105 . . . . . . 7  |-  ( ( P  e.  NN  /\  k  e.  ZZ )  ->  ( P  ^c 
k )  =  ( P ^ k ) )
3818, 36, 37syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  k )  =  ( P ^
k ) )
3938oveq1d 5937 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
( P  ^c 
k )  ^c  A )  =  ( ( P ^ k
)  ^c  A ) )
4035, 39eqtrd 2229 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  ( k  x.  A ) )  =  ( ( P ^ k )  ^c  A ) )
4133, 30, 20rpcxpmul2d 15141 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  ( A  x.  k ) )  =  ( ( P  ^c  A ) ^ k ) )
4232, 40, 413eqtr3d 2237 . . 3  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
( P ^ k
)  ^c  A )  =  ( ( P  ^c  A ) ^ k ) )
4342sumeq2dv 11517 . 2  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N
) ( ( P ^ k )  ^c  A )  =  sum_ k  e.  ( 0 ... N ) ( ( P  ^c  A ) ^ k
) )
448, 28, 433eqtrd 2233 1  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( P  ^c  A ) ^ k
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479   class class class wbr 4033    |-> cmpt 4094   -1-1-onto->wf1o 5257  (class class class)co 5922   CCcc 7875   0cc0 7877    x. cmul 7882   NNcn 8987   NN0cn0 9246   ZZcz 9323   ...cfz 10080   ^cexp 10615   sum_csu 11502    || cdvds 11936   Primecprime 12251    ^c ccxp 15066    sigma csgm 15189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997  ax-pre-suploc 7998  ax-addf 7999  ax-mulf 8000
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7048  df-inf 7049  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-n0 9247  df-xnn0 9310  df-z 9324  df-uz 9599  df-q 9691  df-rp 9726  df-xneg 9844  df-xadd 9845  df-ioo 9964  df-ico 9966  df-icc 9967  df-fz 10081  df-fzo 10215  df-fl 10345  df-mod 10400  df-seqfrec 10525  df-exp 10616  df-fac 10803  df-bc 10825  df-ihash 10853  df-shft 10965  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-clim 11428  df-sumdc 11503  df-ef 11797  df-e 11798  df-dvds 11937  df-gcd 12086  df-prm 12252  df-pc 12430  df-rest 12888  df-topgen 12907  df-psmet 14075  df-xmet 14076  df-met 14077  df-bl 14078  df-mopn 14079  df-top 14210  df-topon 14223  df-bases 14255  df-ntr 14308  df-cn 14400  df-cnp 14401  df-tx 14465  df-cncf 14783  df-limced 14868  df-dvap 14869  df-relog 15067  df-rpcxp 15068  df-sgm 15190
This theorem is referenced by:  1sgmprm  15202  1sgm2ppw  15203
  Copyright terms: Public domain W3C validator