ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgmppw Unicode version

Theorem sgmppw 15514
Description: The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
sgmppw  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( P  ^c  A ) ^ k
) )
Distinct variable groups:    A, k    k, N    P, k

Proof of Theorem sgmppw
Dummy variables  i  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1000 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  A  e.  CC )
2 simp2 1001 . . . . 5  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  P  e.  Prime )
3 prmnn 12482 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
42, 3syl 14 . . . 4  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  P  e.  NN )
5 simp3 1002 . . . 4  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  N  e.  NN0 )
64, 5nnexpcld 10853 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( P ^ N )  e.  NN )
7 sgmval 15505 . . 3  |-  ( ( A  e.  CC  /\  ( P ^ N )  e.  NN )  -> 
( A  sigma  ( P ^ N ) )  =  sum_ n  e.  {
x  e.  NN  |  x  ||  ( P ^ N ) }  (
n  ^c  A ) )
81, 6, 7syl2anc 411 . 2  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  = 
sum_ n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ( n  ^c  A ) )
9 oveq1 5961 . . 3  |-  ( n  =  ( P ^
k )  ->  (
n  ^c  A )  =  ( ( P ^ k )  ^c  A ) )
10 0zd 9397 . . . 4  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  0  e.  ZZ )
115nn0zd 9506 . . . 4  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  N  e.  ZZ )
1210, 11fzfigd 10589 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  (
0 ... N )  e. 
Fin )
13 eqid 2206 . . . . 5  |-  ( i  e.  ( 0 ... N )  |->  ( P ^ i ) )  =  ( i  e.  ( 0 ... N
)  |->  ( P ^
i ) )
1413dvdsppwf1o 15511 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  NN0 )  ->  (
i  e.  ( 0 ... N )  |->  ( P ^ i ) ) : ( 0 ... N ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ N ) } )
152, 5, 14syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  (
i  e.  ( 0 ... N )  |->  ( P ^ i ) ) : ( 0 ... N ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ N ) } )
16 oveq2 5962 . . . 4  |-  ( i  =  k  ->  ( P ^ i )  =  ( P ^ k
) )
17 simpr 110 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ( 0 ... N
) )
184adantr 276 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  P  e.  NN )
19 elfznn0 10249 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
2019adantl 277 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
2118, 20nnexpcld 10853 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P ^ k )  e.  NN )
2213, 16, 17, 21fvmptd3 5683 . . 3  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
( i  e.  ( 0 ... N ) 
|->  ( P ^ i
) ) `  k
)  =  ( P ^ k ) )
23 elrabi 2928 . . . . . 6  |-  ( n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ->  n  e.  NN )
2423adantl 277 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) } )  ->  n  e.  NN )
2524nnrpd 9829 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) } )  ->  n  e.  RR+ )
261adantr 276 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) } )  ->  A  e.  CC )
2725, 26rpcncxpcld 15449 . . 3  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) } )  ->  ( n  ^c  A )  e.  CC )
289, 12, 15, 22, 27fsumf1o 11751 . 2  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  sum_ n  e.  { x  e.  NN  |  x  ||  ( P ^ N ) }  ( n  ^c  A )  =  sum_ k  e.  ( 0 ... N ) ( ( P ^ k
)  ^c  A ) )
2920nn0cnd 9363 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  CC )
301adantr 276 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  A  e.  CC )
3129, 30mulcomd 8107 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
k  x.  A )  =  ( A  x.  k ) )
3231oveq2d 5970 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  ( k  x.  A ) )  =  ( P  ^c  ( A  x.  k ) ) )
3318nnrpd 9829 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  P  e.  RR+ )
3420nn0red 9362 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  RR )
3533, 34, 30cxpmuld 15459 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  ( k  x.  A ) )  =  ( ( P  ^c  k )  ^c  A ) )
3620nn0zd 9506 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
37 cxpexpnn 15418 . . . . . . 7  |-  ( ( P  e.  NN  /\  k  e.  ZZ )  ->  ( P  ^c 
k )  =  ( P ^ k ) )
3818, 36, 37syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  k )  =  ( P ^
k ) )
3938oveq1d 5969 . . . . 5  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
( P  ^c 
k )  ^c  A )  =  ( ( P ^ k
)  ^c  A ) )
4035, 39eqtrd 2239 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  ( k  x.  A ) )  =  ( ( P ^ k )  ^c  A ) )
4133, 30, 20rpcxpmul2d 15454 . . . 4  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  ( P  ^c  ( A  x.  k ) )  =  ( ( P  ^c  A ) ^ k ) )
4232, 40, 413eqtr3d 2247 . . 3  |-  ( ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  (
( P ^ k
)  ^c  A )  =  ( ( P  ^c  A ) ^ k ) )
4342sumeq2dv 11729 . 2  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N
) ( ( P ^ k )  ^c  A )  =  sum_ k  e.  ( 0 ... N ) ( ( P  ^c  A ) ^ k
) )
448, 28, 433eqtrd 2243 1  |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( P  ^c  A ) ^ k
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   {crab 2489   class class class wbr 4048    |-> cmpt 4110   -1-1-onto->wf1o 5276  (class class class)co 5954   CCcc 7936   0cc0 7938    x. cmul 7943   NNcn 9049   NN0cn0 9308   ZZcz 9385   ...cfz 10143   ^cexp 10696   sum_csu 11714    || cdvds 12148   Primecprime 12479    ^c ccxp 15379    sigma csgm 15503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058  ax-pre-suploc 8059  ax-addf 8060  ax-mulf 8061
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-disj 4025  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-of 6168  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-2o 6513  df-oadd 6516  df-er 6630  df-map 6747  df-pm 6748  df-en 6838  df-dom 6839  df-fin 6840  df-sup 7098  df-inf 7099  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-xnn0 9372  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-xneg 9907  df-xadd 9908  df-ioo 10027  df-ico 10029  df-icc 10030  df-fz 10144  df-fzo 10278  df-fl 10426  df-mod 10481  df-seqfrec 10606  df-exp 10697  df-fac 10884  df-bc 10906  df-ihash 10934  df-shft 11176  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-sumdc 11715  df-ef 12009  df-e 12010  df-dvds 12149  df-gcd 12325  df-prm 12480  df-pc 12658  df-rest 13123  df-topgen 13142  df-psmet 14355  df-xmet 14356  df-met 14357  df-bl 14358  df-mopn 14359  df-top 14520  df-topon 14533  df-bases 14565  df-ntr 14618  df-cn 14710  df-cnp 14711  df-tx 14775  df-cncf 15093  df-limced 15178  df-dvap 15179  df-relog 15380  df-rpcxp 15381  df-sgm 15504
This theorem is referenced by:  1sgmprm  15516  1sgm2ppw  15517
  Copyright terms: Public domain W3C validator