| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsppwf1o | Unicode version | ||
| Description: A bijection between the divisors of a prime power and the integers less than or equal to the exponent. (Contributed by Mario Carneiro, 5-May-2016.) |
| Ref | Expression |
|---|---|
| dvdsppwf1o.f |
|
| Ref | Expression |
|---|---|
| dvdsppwf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsppwf1o.f |
. 2
| |
| 2 | breq1 4037 |
. . 3
| |
| 3 | prmnn 12288 |
. . . . 5
| |
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | elfznn0 10191 |
. . . 4
| |
| 6 | nnexpcl 10646 |
. . . 4
| |
| 7 | 4, 5, 6 | syl2an 289 |
. . 3
|
| 8 | prmz 12289 |
. . . . 5
| |
| 9 | 8 | ad2antrr 488 |
. . . 4
|
| 10 | 5 | adantl 277 |
. . . 4
|
| 11 | elfzuz3 10099 |
. . . . 5
| |
| 12 | 11 | adantl 277 |
. . . 4
|
| 13 | dvdsexp 12028 |
. . . 4
| |
| 14 | 9, 10, 12, 13 | syl3anc 1249 |
. . 3
|
| 15 | 2, 7, 14 | elrabd 2922 |
. 2
|
| 16 | simpl 109 |
. . . 4
| |
| 17 | elrabi 2917 |
. . . 4
| |
| 18 | pccl 12478 |
. . . 4
| |
| 19 | 16, 17, 18 | syl2an 289 |
. . 3
|
| 20 | 16 | adantr 276 |
. . . . 5
|
| 21 | 17 | adantl 277 |
. . . . . 6
|
| 22 | 21 | nnzd 9449 |
. . . . 5
|
| 23 | 8 | ad2antrr 488 |
. . . . . 6
|
| 24 | simplr 528 |
. . . . . 6
| |
| 25 | zexpcl 10648 |
. . . . . 6
| |
| 26 | 23, 24, 25 | syl2anc 411 |
. . . . 5
|
| 27 | breq1 4037 |
. . . . . . . 8
| |
| 28 | 27 | elrab 2920 |
. . . . . . 7
|
| 29 | 28 | simprbi 275 |
. . . . . 6
|
| 30 | 29 | adantl 277 |
. . . . 5
|
| 31 | pcdvdstr 12506 |
. . . . 5
| |
| 32 | 20, 22, 26, 30, 31 | syl13anc 1251 |
. . . 4
|
| 33 | pcidlem 12502 |
. . . . 5
| |
| 34 | 33 | adantr 276 |
. . . 4
|
| 35 | 32, 34 | breqtrd 4060 |
. . 3
|
| 36 | fznn0 10190 |
. . . 4
| |
| 37 | 24, 36 | syl 14 |
. . 3
|
| 38 | 19, 35, 37 | mpbir2and 946 |
. 2
|
| 39 | oveq2 5931 |
. . . . . . . . 9
| |
| 40 | 39 | breq2d 4046 |
. . . . . . . 8
|
| 41 | 40 | rspcev 2868 |
. . . . . . 7
|
| 42 | 24, 30, 41 | syl2anc 411 |
. . . . . 6
|
| 43 | pcprmpw2 12512 |
. . . . . . 7
| |
| 44 | 16, 17, 43 | syl2an 289 |
. . . . . 6
|
| 45 | 42, 44 | mpbid 147 |
. . . . 5
|
| 46 | 45 | adantrl 478 |
. . . 4
|
| 47 | oveq2 5931 |
. . . . 5
| |
| 48 | 47 | eqeq2d 2208 |
. . . 4
|
| 49 | 46, 48 | syl5ibrcom 157 |
. . 3
|
| 50 | elfzelz 10102 |
. . . . . . 7
| |
| 51 | pcid 12503 |
. . . . . . 7
| |
| 52 | 16, 50, 51 | syl2an 289 |
. . . . . 6
|
| 53 | 52 | eqcomd 2202 |
. . . . 5
|
| 54 | 53 | adantrr 479 |
. . . 4
|
| 55 | oveq2 5931 |
. . . . 5
| |
| 56 | 55 | eqeq2d 2208 |
. . . 4
|
| 57 | 54, 56 | syl5ibrcom 157 |
. . 3
|
| 58 | 49, 57 | impbid 129 |
. 2
|
| 59 | 1, 15, 38, 58 | f1o2d 6129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 ax-arch 8000 ax-caucvg 8001 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-frec 6450 df-1o 6475 df-2o 6476 df-er 6593 df-en 6801 df-sup 7051 df-inf 7052 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-n0 9252 df-xnn0 9315 df-z 9329 df-uz 9604 df-q 9696 df-rp 9731 df-fz 10086 df-fzo 10220 df-fl 10362 df-mod 10417 df-seqfrec 10542 df-exp 10633 df-cj 11009 df-re 11010 df-im 11011 df-rsqrt 11165 df-abs 11166 df-dvds 11955 df-gcd 12131 df-prm 12286 df-pc 12464 |
| This theorem is referenced by: sgmppw 15238 0sgmppw 15239 |
| Copyright terms: Public domain | W3C validator |