| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsppwf1o | Unicode version | ||
| Description: A bijection between the divisors of a prime power and the integers less than or equal to the exponent. (Contributed by Mario Carneiro, 5-May-2016.) |
| Ref | Expression |
|---|---|
| dvdsppwf1o.f |
|
| Ref | Expression |
|---|---|
| dvdsppwf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsppwf1o.f |
. 2
| |
| 2 | breq1 4085 |
. . 3
| |
| 3 | prmnn 12618 |
. . . . 5
| |
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | elfznn0 10298 |
. . . 4
| |
| 6 | nnexpcl 10761 |
. . . 4
| |
| 7 | 4, 5, 6 | syl2an 289 |
. . 3
|
| 8 | prmz 12619 |
. . . . 5
| |
| 9 | 8 | ad2antrr 488 |
. . . 4
|
| 10 | 5 | adantl 277 |
. . . 4
|
| 11 | elfzuz3 10206 |
. . . . 5
| |
| 12 | 11 | adantl 277 |
. . . 4
|
| 13 | dvdsexp 12358 |
. . . 4
| |
| 14 | 9, 10, 12, 13 | syl3anc 1271 |
. . 3
|
| 15 | 2, 7, 14 | elrabd 2961 |
. 2
|
| 16 | simpl 109 |
. . . 4
| |
| 17 | elrabi 2956 |
. . . 4
| |
| 18 | pccl 12808 |
. . . 4
| |
| 19 | 16, 17, 18 | syl2an 289 |
. . 3
|
| 20 | 16 | adantr 276 |
. . . . 5
|
| 21 | 17 | adantl 277 |
. . . . . 6
|
| 22 | 21 | nnzd 9556 |
. . . . 5
|
| 23 | 8 | ad2antrr 488 |
. . . . . 6
|
| 24 | simplr 528 |
. . . . . 6
| |
| 25 | zexpcl 10763 |
. . . . . 6
| |
| 26 | 23, 24, 25 | syl2anc 411 |
. . . . 5
|
| 27 | breq1 4085 |
. . . . . . . 8
| |
| 28 | 27 | elrab 2959 |
. . . . . . 7
|
| 29 | 28 | simprbi 275 |
. . . . . 6
|
| 30 | 29 | adantl 277 |
. . . . 5
|
| 31 | pcdvdstr 12836 |
. . . . 5
| |
| 32 | 20, 22, 26, 30, 31 | syl13anc 1273 |
. . . 4
|
| 33 | pcidlem 12832 |
. . . . 5
| |
| 34 | 33 | adantr 276 |
. . . 4
|
| 35 | 32, 34 | breqtrd 4108 |
. . 3
|
| 36 | fznn0 10297 |
. . . 4
| |
| 37 | 24, 36 | syl 14 |
. . 3
|
| 38 | 19, 35, 37 | mpbir2and 950 |
. 2
|
| 39 | oveq2 6002 |
. . . . . . . . 9
| |
| 40 | 39 | breq2d 4094 |
. . . . . . . 8
|
| 41 | 40 | rspcev 2907 |
. . . . . . 7
|
| 42 | 24, 30, 41 | syl2anc 411 |
. . . . . 6
|
| 43 | pcprmpw2 12842 |
. . . . . . 7
| |
| 44 | 16, 17, 43 | syl2an 289 |
. . . . . 6
|
| 45 | 42, 44 | mpbid 147 |
. . . . 5
|
| 46 | 45 | adantrl 478 |
. . . 4
|
| 47 | oveq2 6002 |
. . . . 5
| |
| 48 | 47 | eqeq2d 2241 |
. . . 4
|
| 49 | 46, 48 | syl5ibrcom 157 |
. . 3
|
| 50 | elfzelz 10209 |
. . . . . . 7
| |
| 51 | pcid 12833 |
. . . . . . 7
| |
| 52 | 16, 50, 51 | syl2an 289 |
. . . . . 6
|
| 53 | 52 | eqcomd 2235 |
. . . . 5
|
| 54 | 53 | adantrr 479 |
. . . 4
|
| 55 | oveq2 6002 |
. . . . 5
| |
| 56 | 55 | eqeq2d 2241 |
. . . 4
|
| 57 | 54, 56 | syl5ibrcom 157 |
. . 3
|
| 58 | 49, 57 | impbid 129 |
. 2
|
| 59 | 1, 15, 38, 58 | f1o2d 6201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-1o 6552 df-2o 6553 df-er 6670 df-en 6878 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-xnn0 9421 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-dvds 12285 df-gcd 12461 df-prm 12616 df-pc 12794 |
| This theorem is referenced by: sgmppw 15651 0sgmppw 15652 |
| Copyright terms: Public domain | W3C validator |