ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsppwf1o Unicode version

Theorem dvdsppwf1o 15511
Description: A bijection between the divisors of a prime power and the integers less than or equal to the exponent. (Contributed by Mario Carneiro, 5-May-2016.)
Hypothesis
Ref Expression
dvdsppwf1o.f  |-  F  =  ( n  e.  ( 0 ... A ) 
|->  ( P ^ n
) )
Assertion
Ref Expression
dvdsppwf1o  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  F : ( 0 ... A ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ A ) } )
Distinct variable groups:    x, n, A    P, n, x
Allowed substitution hints:    F( x, n)

Proof of Theorem dvdsppwf1o
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 dvdsppwf1o.f . 2  |-  F  =  ( n  e.  ( 0 ... A ) 
|->  ( P ^ n
) )
2 breq1 4051 . . 3  |-  ( x  =  ( P ^
n )  ->  (
x  ||  ( P ^ A )  <->  ( P ^ n )  ||  ( P ^ A ) ) )
3 prmnn 12482 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
43adantr 276 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  P  e.  NN )
5 elfznn0 10249 . . . 4  |-  ( n  e.  ( 0 ... A )  ->  n  e.  NN0 )
6 nnexpcl 10710 . . . 4  |-  ( ( P  e.  NN  /\  n  e.  NN0 )  -> 
( P ^ n
)  e.  NN )
74, 5, 6syl2an 289 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  ( P ^
n )  e.  NN )
8 prmz 12483 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  ZZ )
98ad2antrr 488 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  P  e.  ZZ )
105adantl 277 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  n  e.  NN0 )
11 elfzuz3 10157 . . . . 5  |-  ( n  e.  ( 0 ... A )  ->  A  e.  ( ZZ>= `  n )
)
1211adantl 277 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  A  e.  (
ZZ>= `  n ) )
13 dvdsexp 12222 . . . 4  |-  ( ( P  e.  ZZ  /\  n  e.  NN0  /\  A  e.  ( ZZ>= `  n )
)  ->  ( P ^ n )  ||  ( P ^ A ) )
149, 10, 12, 13syl3anc 1250 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  ( P ^
n )  ||  ( P ^ A ) )
152, 7, 14elrabd 2933 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  ( P ^
n )  e.  {
x  e.  NN  |  x  ||  ( P ^ A ) } )
16 simpl 109 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  P  e.  Prime )
17 elrabi 2928 . . . 4  |-  ( m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) }  ->  m  e.  NN )
18 pccl 12672 . . . 4  |-  ( ( P  e.  Prime  /\  m  e.  NN )  ->  ( P  pCnt  m )  e. 
NN0 )
1916, 17, 18syl2an 289 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( P  pCnt  m )  e. 
NN0 )
2016adantr 276 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  P  e.  Prime )
2117adantl 277 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  m  e.  NN )
2221nnzd 9507 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  m  e.  ZZ )
238ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  P  e.  ZZ )
24 simplr 528 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  A  e.  NN0 )
25 zexpcl 10712 . . . . . 6  |-  ( ( P  e.  ZZ  /\  A  e.  NN0 )  -> 
( P ^ A
)  e.  ZZ )
2623, 24, 25syl2anc 411 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( P ^ A )  e.  ZZ )
27 breq1 4051 . . . . . . . 8  |-  ( x  =  m  ->  (
x  ||  ( P ^ A )  <->  m  ||  ( P ^ A ) ) )
2827elrab 2931 . . . . . . 7  |-  ( m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) }  <->  ( m  e.  NN  /\  m  ||  ( P ^ A ) ) )
2928simprbi 275 . . . . . 6  |-  ( m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) }  ->  m  ||  ( P ^ A ) )
3029adantl 277 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  m  ||  ( P ^ A
) )
31 pcdvdstr 12700 . . . . 5  |-  ( ( P  e.  Prime  /\  (
m  e.  ZZ  /\  ( P ^ A )  e.  ZZ  /\  m  ||  ( P ^ A
) ) )  -> 
( P  pCnt  m
)  <_  ( P  pCnt  ( P ^ A
) ) )
3220, 22, 26, 30, 31syl13anc 1252 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( P  pCnt  m )  <_ 
( P  pCnt  ( P ^ A ) ) )
33 pcidlem 12696 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
3433adantr 276 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
3532, 34breqtrd 4074 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( P  pCnt  m )  <_  A )
36 fznn0 10248 . . . 4  |-  ( A  e.  NN0  ->  ( ( P  pCnt  m )  e.  ( 0 ... A
)  <->  ( ( P 
pCnt  m )  e.  NN0  /\  ( P  pCnt  m
)  <_  A )
) )
3724, 36syl 14 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  (
( P  pCnt  m
)  e.  ( 0 ... A )  <->  ( ( P  pCnt  m )  e. 
NN0  /\  ( P  pCnt  m )  <_  A
) ) )
3819, 35, 37mpbir2and 947 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( P  pCnt  m )  e.  ( 0 ... A
) )
39 oveq2 5962 . . . . . . . . 9  |-  ( n  =  A  ->  ( P ^ n )  =  ( P ^ A
) )
4039breq2d 4060 . . . . . . . 8  |-  ( n  =  A  ->  (
m  ||  ( P ^ n )  <->  m  ||  ( P ^ A ) ) )
4140rspcev 2879 . . . . . . 7  |-  ( ( A  e.  NN0  /\  m  ||  ( P ^ A ) )  ->  E. n  e.  NN0  m  ||  ( P ^
n ) )
4224, 30, 41syl2anc 411 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  E. n  e.  NN0  m  ||  ( P ^ n ) )
43 pcprmpw2 12706 . . . . . . 7  |-  ( ( P  e.  Prime  /\  m  e.  NN )  ->  ( E. n  e.  NN0  m  ||  ( P ^
n )  <->  m  =  ( P ^ ( P 
pCnt  m ) ) ) )
4416, 17, 43syl2an 289 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( E. n  e.  NN0  m  ||  ( P ^
n )  <->  m  =  ( P ^ ( P 
pCnt  m ) ) ) )
4542, 44mpbid 147 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  m  =  ( P ^
( P  pCnt  m
) ) )
4645adantrl 478 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  ( n  e.  ( 0 ... A )  /\  m  e.  {
x  e.  NN  |  x  ||  ( P ^ A ) } ) )  ->  m  =  ( P ^ ( P 
pCnt  m ) ) )
47 oveq2 5962 . . . . 5  |-  ( n  =  ( P  pCnt  m )  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  m ) ) )
4847eqeq2d 2218 . . . 4  |-  ( n  =  ( P  pCnt  m )  ->  ( m  =  ( P ^
n )  <->  m  =  ( P ^ ( P 
pCnt  m ) ) ) )
4946, 48syl5ibrcom 157 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  ( n  e.  ( 0 ... A )  /\  m  e.  {
x  e.  NN  |  x  ||  ( P ^ A ) } ) )  ->  ( n  =  ( P  pCnt  m )  ->  m  =  ( P ^ n ) ) )
50 elfzelz 10160 . . . . . . 7  |-  ( n  e.  ( 0 ... A )  ->  n  e.  ZZ )
51 pcid 12697 . . . . . . 7  |-  ( ( P  e.  Prime  /\  n  e.  ZZ )  ->  ( P  pCnt  ( P ^
n ) )  =  n )
5216, 50, 51syl2an 289 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  ( P  pCnt  ( P ^ n ) )  =  n )
5352eqcomd 2212 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  n  =  ( P  pCnt  ( P ^ n ) ) )
5453adantrr 479 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  ( n  e.  ( 0 ... A )  /\  m  e.  {
x  e.  NN  |  x  ||  ( P ^ A ) } ) )  ->  n  =  ( P  pCnt  ( P ^ n ) ) )
55 oveq2 5962 . . . . 5  |-  ( m  =  ( P ^
n )  ->  ( P  pCnt  m )  =  ( P  pCnt  ( P ^ n ) ) )
5655eqeq2d 2218 . . . 4  |-  ( m  =  ( P ^
n )  ->  (
n  =  ( P 
pCnt  m )  <->  n  =  ( P  pCnt  ( P ^ n ) ) ) )
5754, 56syl5ibrcom 157 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  ( n  e.  ( 0 ... A )  /\  m  e.  {
x  e.  NN  |  x  ||  ( P ^ A ) } ) )  ->  ( m  =  ( P ^
n )  ->  n  =  ( P  pCnt  m ) ) )
5849, 57impbid 129 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  ( n  e.  ( 0 ... A )  /\  m  e.  {
x  e.  NN  |  x  ||  ( P ^ A ) } ) )  ->  ( n  =  ( P  pCnt  m )  <->  m  =  ( P ^ n ) ) )
591, 15, 38, 58f1o2d 6161 1  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  F : ( 0 ... A ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ A ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   E.wrex 2486   {crab 2489   class class class wbr 4048    |-> cmpt 4110   -1-1-onto->wf1o 5276   ` cfv 5277  (class class class)co 5954   0cc0 7938    <_ cle 8121   NNcn 9049   NN0cn0 9308   ZZcz 9385   ZZ>=cuz 9661   ...cfz 10143   ^cexp 10696    || cdvds 12148   Primecprime 12479    pCnt cpc 12657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-1o 6512  df-2o 6513  df-er 6630  df-en 6838  df-sup 7098  df-inf 7099  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-xnn0 9372  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fzo 10278  df-fl 10426  df-mod 10481  df-seqfrec 10606  df-exp 10697  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-dvds 12149  df-gcd 12325  df-prm 12480  df-pc 12658
This theorem is referenced by:  sgmppw  15514  0sgmppw  15515
  Copyright terms: Public domain W3C validator