ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatsymb GIF version

Theorem ccatsymb 11033
Description: The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
Assertion
Ref Expression
ccatsymb ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))

Proof of Theorem ccatsymb
StepHypRef Expression
1 simprll 537 . . . . . . . 8 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 simpr 110 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → 𝐼 < (♯‘𝐴))
32anim2i 342 . . . . . . . . 9 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (0 ≤ 𝐼𝐼 < (♯‘𝐴)))
4 simpr 110 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
5 0zd 9366 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 0 ∈ ℤ)
6 lencl 10973 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
76nn0zd 9475 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
87ad2antrr 488 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (♯‘𝐴) ∈ ℤ)
9 elfzo 10253 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → (𝐼 ∈ (0..^(♯‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (♯‘𝐴))))
104, 5, 8, 9syl3anc 1249 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ (0..^(♯‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (♯‘𝐴))))
1110ad2antrl 490 . . . . . . . . 9 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐼 ∈ (0..^(♯‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (♯‘𝐴))))
123, 11mpbird 167 . . . . . . . 8 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → 𝐼 ∈ (0..^(♯‘𝐴)))
13 df-3an 982 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ (0..^(♯‘𝐴))))
141, 12, 13sylanbrc 417 . . . . . . 7 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))))
15 ccatval1 11028 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐴𝐼))
1615eqcomd 2210 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
1714, 16syl 14 . . . . . 6 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
1817ancoms 268 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) ∧ 0 ≤ 𝐼) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
19 0z 9365 . . . . . . . . . . 11 0 ∈ ℤ
20 zltnle 9400 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐼 < 0 ↔ ¬ 0 ≤ 𝐼))
2119, 20mpan2 425 . . . . . . . . . 10 (𝐼 ∈ ℤ → (𝐼 < 0 ↔ ¬ 0 ≤ 𝐼))
2221adantl 277 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 < 0 ↔ ¬ 0 ≤ 𝐼))
23 simpl 109 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐴 ∈ Word 𝑉)
2423anim1i 340 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐴 ∈ Word 𝑉𝐼 ∈ ℤ))
2524adantr 276 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴 ∈ Word 𝑉𝐼 ∈ ℤ))
26 animorrl 827 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐼 < 0 ∨ (♯‘𝐴) ≤ 𝐼))
27 wrdsymb0 11001 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝐴) ≤ 𝐼) → (𝐴𝐼) = ∅))
2825, 26, 27sylc 62 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴𝐼) = ∅)
29 ccatcl 11024 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
3029anim1i 340 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
3130adantr 276 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
32 animorrl 827 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐼 < 0 ∨ (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼))
33 wrdsymb0 11001 . . . . . . . . . . . 12 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = ∅))
3431, 32, 33sylc 62 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → ((𝐴 ++ 𝐵)‘𝐼) = ∅)
3528, 34eqtr4d 2240 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
3635ex 115 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 < 0 → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
3722, 36sylbird 170 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (¬ 0 ≤ 𝐼 → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
3837com12 30 . . . . . . 7 (¬ 0 ≤ 𝐼 → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
3938adantrd 279 . . . . . 6 (¬ 0 ≤ 𝐼 → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
4039impcom 125 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) ∧ ¬ 0 ≤ 𝐼) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
41 simplr 528 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → 𝐼 ∈ ℤ)
42 zdcle 9431 . . . . . . 7 ((0 ∈ ℤ ∧ 𝐼 ∈ ℤ) → DECID 0 ≤ 𝐼)
4319, 41, 42sylancr 414 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → DECID 0 ≤ 𝐼)
44 exmiddc 837 . . . . . 6 (DECID 0 ≤ 𝐼 → (0 ≤ 𝐼 ∨ ¬ 0 ≤ 𝐼))
4543, 44syl 14 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → (0 ≤ 𝐼 ∨ ¬ 0 ≤ 𝐼))
4618, 40, 45mpjaodan 799 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
47 simprll 537 . . . . . . . 8 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
48 id 19 . . . . . . . . . 10 (𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → 𝐼 < ((♯‘𝐴) + (♯‘𝐵)))
496nn0red 9331 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℝ)
50 zre 9358 . . . . . . . . . . . . 13 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
51 lenlt 8130 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((♯‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (♯‘𝐴)))
5249, 50, 51syl2an 289 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → ((♯‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (♯‘𝐴)))
5352adantlr 477 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((♯‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (♯‘𝐴)))
5453biimpar 297 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (♯‘𝐴) ≤ 𝐼)
5548, 54anim12ci 339 . . . . . . . . 9 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
56 lencl 10973 . . . . . . . . . . . . . 14 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
5756nn0zd 9475 . . . . . . . . . . . . 13 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℤ)
58 zaddcl 9394 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
597, 57, 58syl2an 289 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
6059adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
61 elfzo 10253 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) → (𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵)))))
624, 8, 60, 61syl3anc 1249 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵)))))
6362ad2antrl 490 . . . . . . . . 9 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵)))))
6455, 63mpbird 167 . . . . . . . 8 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → 𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
65 df-3an 982 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
6647, 64, 65sylanbrc 417 . . . . . . 7 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
67 ccatval2 11029 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (♯‘𝐴))))
6867eqcomd 2210 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
6966, 68syl 14 . . . . . 6 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
7069ancoms 268 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) ∧ 𝐼 < ((♯‘𝐴) + (♯‘𝐵))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
7156nn0red 9331 . . . . . . . . . . 11 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℝ)
72 readdcl 8033 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ)
7349, 71, 72syl2an 289 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ)
74 lenlt 8130 . . . . . . . . . 10 ((((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ ∧ 𝐼 ∈ ℝ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 ↔ ¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
7573, 50, 74syl2an 289 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 ↔ ¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
76 simplr 528 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 𝐵 ∈ Word 𝑉)
77 simpr 110 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
787adantr 276 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → (♯‘𝐴) ∈ ℤ)
7977, 78zsubcld 9482 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐼 − (♯‘𝐴)) ∈ ℤ)
8079adantlr 477 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 − (♯‘𝐴)) ∈ ℤ)
8176, 80jca 306 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐵 ∈ Word 𝑉 ∧ (𝐼 − (♯‘𝐴)) ∈ ℤ))
8281adantr 276 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐵 ∈ Word 𝑉 ∧ (𝐼 − (♯‘𝐴)) ∈ ℤ))
8349ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (♯‘𝐴) ∈ ℝ)
8471ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (♯‘𝐵) ∈ ℝ)
8550adantl 277 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℝ)
8683, 84, 85leaddsub2d 8602 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 ↔ (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴))))
8786biimpa 296 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴)))
8887olcd 735 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((𝐼 − (♯‘𝐴)) < 0 ∨ (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴))))
89 wrdsymb0 11001 . . . . . . . . . . . 12 ((𝐵 ∈ Word 𝑉 ∧ (𝐼 − (♯‘𝐴)) ∈ ℤ) → (((𝐼 − (♯‘𝐴)) < 0 ∨ (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ∅))
9082, 88, 89sylc 62 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐵‘(𝐼 − (♯‘𝐴))) = ∅)
9130adantr 276 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
92 ccatlen 11026 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
9392ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
94 simpr 110 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼)
9593, 94eqbrtrd 4065 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼)
9695olcd 735 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐼 < 0 ∨ (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼))
9791, 96, 33sylc 62 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = ∅)
9890, 97eqtr4d 2240 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
9998ex 115 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
10075, 99sylbird 170 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
101100com12 30 . . . . . . 7 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
102101adantrd 279 . . . . . 6 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
103102impcom 125 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) ∧ ¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
104 simplr 528 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → 𝐼 ∈ ℤ)
10560adantr 276 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
106 zdclt 9432 . . . . . . 7 ((𝐼 ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) → DECID 𝐼 < ((♯‘𝐴) + (♯‘𝐵)))
107104, 105, 106syl2anc 411 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → DECID 𝐼 < ((♯‘𝐴) + (♯‘𝐵)))
108 exmiddc 837 . . . . . 6 (DECID 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → (𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∨ ¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
109107, 108syl 14 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∨ ¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
11070, 103, 109mpjaodan 799 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
111 zdclt 9432 . . . . 5 ((𝐼 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝐼 < (♯‘𝐴))
1124, 8, 111syl2anc 411 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → DECID 𝐼 < (♯‘𝐴))
11346, 110, 112ifeqdadc 3602 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))) = ((𝐴 ++ 𝐵)‘𝐼))
114113eqcomd 2210 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))
1151143impa 1196 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1372  wcel 2175  c0 3459  ifcif 3570   class class class wbr 4043  cfv 5268  (class class class)co 5934  cr 7906  0cc0 7907   + caddc 7910   < clt 8089  cle 8090  cmin 8225  cz 9354  ..^cfzo 10246  chash 10901  Word cword 10969   ++ cconcat 11021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-fz 10113  df-fzo 10247  df-ihash 10902  df-word 10970  df-concat 11022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator