HomeHome Intuitionistic Logic Explorer
Theorem List (p. 154 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15301-15400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
11.3.2  Number-theoretical functions
 
Syntaxcsgm 15301 Extend class notation with the divisor function.
 class  sigma
 
Definitiondf-sgm 15302* Define the sum of positive divisors function  ( x  sigma  n ), which is the sum of the xth powers of the positive integer divisors of n, see definition in [ApostolNT] p. 38. For  x  = 
0,  ( x  sigma  n ) counts the number of divisors of  n, i.e.  ( 0  sigma  n ) is the divisor function, see remark in [ApostolNT] p. 38. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |- 
 sigma  =  ( x  e.  CC ,  n  e. 
 NN  |->  sum_ k  e.  { p  e.  NN  |  p  ||  n }  ( k 
 ^c  x ) )
 
Theoremsgmval 15303* The value of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  NN )  ->  ( A  sigma  B )  =  sum_ k  e.  { p  e.  NN  |  p  ||  B }  ( k  ^c  A ) )
 
Theoremsgmval2 15304* The value of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  sigma  B )  =  sum_ k  e.  { p  e.  NN  |  p  ||  B }  ( k ^ A ) )
 
Theorem0sgm 15305* The value of the sum-of-divisors function, usually denoted σ<SUB>0</SUB>(<i>n</i>). (Contributed by Mario Carneiro, 21-Jun-2015.)
 |-  ( A  e.  NN  ->  ( 0  sigma  A )  =  ( `  { p  e.  NN  |  p  ||  A } ) )
 
Theoremsgmf 15306 The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 21-Jun-2015.)
 |- 
 sigma  : ( CC  X.  NN ) --> CC
 
Theoremsgmcl 15307 Closure of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  NN )  ->  ( A  sigma  B )  e.  CC )
 
Theoremsgmnncl 15308 Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN )  ->  ( A  sigma  B )  e.  NN )
 
Theoremdvdsppwf1o 15309* A bijection between the divisors of a prime power and the integers less than or equal to the exponent. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  F  =  ( n  e.  ( 0 ...
 A )  |->  ( P ^ n ) )   =>    |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  F : ( 0 ... A ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ A ) } )
 
Theoremmpodvdsmulf1o 15310* If  M and  N are two coprime integers, multiplication forms a bijection from the set of pairs  <. j ,  k >. where  j  ||  M and  k  ||  N, to the set of divisors of  M  x.  N. (Contributed by GG, 18-Apr-2025.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  ( M  gcd  N )  =  1 )   &    |-  X  =  { x  e.  NN  |  x  ||  M }   &    |-  Y  =  { x  e.  NN  |  x  ||  N }   &    |-  Z  =  { x  e.  NN  |  x  ||  ( M  x.  N ) }   =>    |-  ( ph  ->  (
 ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
 ) )  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -1-1-onto-> Z )
 
Theoremfsumdvdsmul 15311* Product of two divisor sums. (This is also the main part of the proof that " sum_ k  ||  N F ( k ) is a multiplicative function if  F is".) (Contributed by Mario Carneiro, 2-Jul-2015.) Avoid ax-mulf 8019. (Revised by GG, 18-Apr-2025.)
 |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  ( M  gcd  N )  =  1 )   &    |-  X  =  { x  e.  NN  |  x  ||  M }   &    |-  Y  =  { x  e.  NN  |  x  ||  N }   &    |-  Z  =  { x  e.  NN  |  x  ||  ( M  x.  N ) }   &    |-  ( ( ph  /\  j  e.  X ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Y )  ->  B  e.  CC )   &    |-  ( ( ph  /\  ( j  e.  X  /\  k  e.  Y ) )  ->  ( A  x.  B )  =  D )   &    |-  ( i  =  ( j  x.  k
 )  ->  C  =  D )   =>    |-  ( ph  ->  ( sum_ j  e.  X  A  x.  sum_ k  e.  Y  B )  =  sum_ i  e.  Z  C )
 
Theoremsgmppw 15312* The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.)
 |-  ( ( A  e.  CC  /\  P  e.  Prime  /\  N  e.  NN0 )  ->  ( A  sigma  ( P ^ N ) )  =  sum_ k  e.  (
 0 ... N ) ( ( P  ^c  A ) ^ k
 ) )
 
Theorem0sgmppw 15313 A prime power  P ^ K has  K  +  1 divisors. (Contributed by Mario Carneiro, 17-May-2016.)
 |-  ( ( P  e.  Prime  /\  K  e.  NN0 )  ->  ( 0  sigma  ( P ^ K ) )  =  ( K  +  1 ) )
 
Theorem1sgmprm 15314 The sum of divisors for a prime is 
P  +  1 because the only divisors are  1 and  P. (Contributed by Mario Carneiro, 17-May-2016.)
 |-  ( P  e.  Prime  ->  ( 1  sigma  P )  =  ( P  +  1 ) )
 
Theorem1sgm2ppw 15315 The sum of the divisors of  2 ^ ( N  -  1 ). (Contributed by Mario Carneiro, 17-May-2016.)
 |-  ( N  e.  NN  ->  ( 1  sigma  ( 2 ^ ( N  -  1 ) ) )  =  ( ( 2 ^ N )  -  1 ) )
 
Theoremsgmmul 15316 The divisor function for fixed parameter  A is a multiplicative function. (Contributed by Mario Carneiro, 2-Jul-2015.)
 |-  ( ( A  e.  CC  /\  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 )
 )  ->  ( A  sigma  ( M  x.  N ) )  =  (
 ( A  sigma  M )  x.  ( A  sigma  N ) ) )
 
11.3.3  Perfect Number Theorem
 
Theoremmersenne 15317 A Mersenne prime is a prime number of the form  2 ^ P  -  1. This theorem shows that the  P in this expression is necessarily also prime. (Contributed by Mario Carneiro, 17-May-2016.)
 |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime ) 
 ->  P  e.  Prime )
 
Theoremperfect1 15318 Euclid's contribution to the Euclid-Euler theorem. A number of the form  2 ^ (
p  -  1 )  x.  ( 2 ^ p  -  1 ) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016.)
 |-  ( ( P  e.  ZZ  /\  ( ( 2 ^ P )  -  1 )  e.  Prime ) 
 ->  ( 1  sigma  ( ( 2 ^ ( P  -  1 ) )  x.  ( ( 2 ^ P )  -  1 ) ) )  =  ( ( 2 ^ P )  x.  ( ( 2 ^ P )  -  1
 ) ) )
 
Theoremperfectlem1 15319 Lemma for perfect 15321. (Contributed by Mario Carneiro, 7-Jun-2016.)
 |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  B  e.  NN )   &    |-  ( ph  ->  -.  2  ||  B )   &    |-  ( ph  ->  ( 1  sigma  ( (
 2 ^ A )  x.  B ) )  =  ( 2  x.  ( ( 2 ^ A )  x.  B ) ) )   =>    |-  ( ph  ->  ( ( 2 ^ ( A  +  1 )
 )  e.  NN  /\  ( ( 2 ^
 ( A  +  1 ) )  -  1
 )  e.  NN  /\  ( B  /  (
 ( 2 ^ ( A  +  1 )
 )  -  1 ) )  e.  NN )
 )
 
Theoremperfectlem2 15320 Lemma for perfect 15321. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by Wolf Lammen, 17-Sep-2020.)
 |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  B  e.  NN )   &    |-  ( ph  ->  -.  2  ||  B )   &    |-  ( ph  ->  ( 1  sigma  ( (
 2 ^ A )  x.  B ) )  =  ( 2  x.  ( ( 2 ^ A )  x.  B ) ) )   =>    |-  ( ph  ->  ( B  e.  Prime  /\  B  =  ( ( 2 ^
 ( A  +  1 ) )  -  1
 ) ) )
 
Theoremperfect 15321* The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer  N is a perfect number (that is, its divisor sum is  2 N) if and only if it is of the form  2 ^ ( p  - 
1 )  x.  (
2 ^ p  - 
1 ), where  2 ^ p  -  1 is prime (a Mersenne prime), and therefore  p is also prime, see mersenne 15317. This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.)
 |-  ( ( N  e.  NN  /\  2  ||  N )  ->  ( ( 1 
 sigma  N )  =  ( 2  x.  N )  <->  E. p  e.  ZZ  ( ( ( 2 ^ p )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) ) ) )
 
11.3.4  Quadratic residues and the Legendre symbol

If the congruence  ( ( x ^ 2 )  mod  p )  =  ( n  mod  p ) has a solution we say that  n is a quadratic residue  mod  p. If the congruence has no solution we say that  n is a quadratic nonresidue 
mod  p, see definition in [ApostolNT] p. 178. The Legendre symbol  ( n  /L
p ) is defined in a way that its value is 
1 if  n is a quadratic residue  mod  p and  -u 1 if  n is a quadratic nonresidue  mod  p (and  0 if  p divides  n).

Originally, the Legendre symbol  ( N  /L
P ) was defined for odd primes  P only (and arbitrary integers  N) by Adrien-Marie Legendre in 1798, see definition in [ApostolNT] p. 179. It was generalized to be defined for any positive odd integer by Carl Gustav Jacob Jacobi in 1837 (therefore called "Jacobi symbol" since then), see definition in [ApostolNT] p. 188. Finally, it was generalized to be defined for any integer by Leopold Kronecker in 1885 (therefore called "Kronecker symbol" since then). The definition df-lgs 15323 for the "Legendre symbol"  /L is actually the definition of the "Kronecker symbol". Since only one definition (and one class symbol) are provided in set.mm, the names "Legendre symbol", "Jacobi symbol" and "Kronecker symbol" are used synonymously for  /L, but mostly it is called "Legendre symbol", even if it is used in the context of a "Jacobi symbol" or "Kronecker symbol".

 
Syntaxclgs 15322 Extend class notation with the Legendre symbol function.
 class  /L
 
Definitiondf-lgs 15323* Define the Legendre symbol (actually the Kronecker symbol, which extends the Legendre symbol to all integers, and also the Jacobi symbol, which restricts the Kronecker symbol to positive odd integers). See definition in [ApostolNT] p. 179 resp. definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |- 
 /L  =  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^
 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  < 
 0  /\  a  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2 
 ||  a ,  0 ,  if ( ( a  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( a ^ (
 ( m  -  1
 )  /  2 )
 )  +  1 ) 
 mod  m )  -  1 ) ) ^
 ( m  pCnt  n ) ) ,  1 ) ) ) `  ( abs `  n )
 ) ) ) )
 
Theoremzabsle1 15324  { -u 1 ,  0 ,  1 } is the set of all integers with absolute value at most  1. (Contributed by AV, 13-Jul-2021.)
 |-  ( Z  e.  ZZ  ->  ( Z  e.  { -u 1 ,  0 ,  1 }  <->  ( abs `  Z )  <_  1 ) )
 
Theoremlgslem1 15325 When  a is coprime to the prime  p,  a ^
( ( p  - 
1 )  /  2
) is equivalent  mod  p to  1 or  -u 1, and so adding  1 makes it equivalent to  0 or  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
 ( ( A ^
 ( ( P  -  1 )  /  2
 ) )  +  1 )  mod  P )  e.  { 0 ,  2 } )
 
Theoremlgslem2 15326 The set  Z of all integers with absolute value at most 
1 contains  { -u 1 ,  0 ,  1 }. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( -u 1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
 
Theoremlgslem3 15327* The set  Z of all integers with absolute value at most 
1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  Z  /\  B  e.  Z )  ->  ( A  x.  B )  e.  Z )
 
Theoremlgslem4 15328* Lemma for lgsfcl2 15331. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 19-Mar-2022.)
 |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  (
 ( ( ( A ^ ( ( P  -  1 )  / 
 2 ) )  +  1 )  mod  P )  -  1 )  e.  Z )
 
Theoremlgsval 15329* Value of the Legendre symbol at an arbitrary integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0 
 /\  A  <  0
 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
  ( abs `  N ) ) ) ) )
 
Theoremlgsfvalg 15330* Value of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by Jim Kingdon, 4-Nov-2024.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  M  e.  NN )  ->  ( F `  M )  =  if ( M  e.  Prime ,  ( if ( M  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( M  -  1
 )  /  2 )
 )  +  1 ) 
 mod  M )  -  1
 ) ) ^ ( M  pCnt  N ) ) ,  1 ) )
 
Theoremlgsfcl2 15331* The function  F is closed in integers with absolute value less than  1 (namely  { -u
1 ,  0 ,  1 }, see zabsle1 15324). (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   &    |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  F : NN --> Z )
 
Theoremlgscllem 15332* The Legendre symbol is an element of  Z. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   &    |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  Z )
 
Theoremlgsfcl 15333* Closure of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  F : NN --> ZZ )
 
Theoremlgsfle1 15334* The function  F has magnitude less or equal to  1. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  M  e.  NN )  ->  ( abs `  ( F `  M ) )  <_  1 )
 
Theoremlgsval2lem 15335* Lemma for lgsval2 15341. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  Prime ) 
 ->  ( A  /L N )  =  if ( N  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } , 
 1 ,  -u 1
 ) ) ,  (
 ( ( ( A ^ ( ( N  -  1 )  / 
 2 ) )  +  1 )  mod  N )  -  1 ) ) )
 
Theoremlgsval4lem 15336* Lemma for lgsval4 15345. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2 
 ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
 ( n  -  1
 )  /  2 )
 )  +  1 ) 
 mod  n )  -  1 ) ) ^
 ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  (
 ( A  /L
 n ) ^ ( n  pCnt  N ) ) ,  1 ) ) )
 
Theoremlgscl2 15337* The Legendre symbol is an integer with absolute value less than or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  Z  =  { x  e.  ZZ  |  ( abs `  x )  <_  1 }   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  Z )
 
Theoremlgs0 15338 The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( A  e.  ZZ  ->  ( A  /L
 0 )  =  if ( ( A ^
 2 )  =  1 ,  1 ,  0 ) )
 
Theoremlgscl 15339 The Legendre symbol is an integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  ZZ )
 
Theoremlgsle1 15340 The Legendre symbol has absolute value less than or equal to 1. Together with lgscl 15339 this implies that it takes values in  { -u 1 ,  0 ,  1 }. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( A  /L N ) )  <_  1 )
 
Theoremlgsval2 15341 The Legendre symbol at a prime (this is the traditional domain of the Legendre symbol, except for the addition of prime  2). (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  P  e.  Prime ) 
 ->  ( A  /L P )  =  if ( P  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } , 
 1 ,  -u 1
 ) ) ,  (
 ( ( ( A ^ ( ( P  -  1 )  / 
 2 ) )  +  1 )  mod  P )  -  1 ) ) )
 
Theoremlgs2 15342 The Legendre symbol at  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( A  e.  ZZ  ->  ( A  /L
 2 )  =  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } , 
 1 ,  -u 1
 ) ) )
 
Theoremlgsval3 15343 The Legendre symbol at an odd prime (this is the traditional domain of the Legendre symbol). (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( A  /L P )  =  ( ( ( ( A ^ (
 ( P  -  1
 )  /  2 )
 )  +  1 ) 
 mod  P )  -  1
 ) )
 
Theoremlgsvalmod 15344 The Legendre symbol is equivalent to 
a ^ ( ( p  -  1 )  /  2 ),  mod  p. This theorem is also called "Euler's criterion", see theorem 9.2 in [ApostolNT] p. 180, or a representation of Euler's criterion using the Legendre symbol, (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  (
 ( A  /L P )  mod  P )  =  ( ( A ^ ( ( P  -  1 )  / 
 2 ) )  mod  P ) )
 
Theoremlgsval4 15345* Restate lgsval 15329 for nonzero  N, where the function  F has been abbreviated into a self-referential expression taking the value of  /L on the primes as given. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  (
 ( A  /L
 n ) ^ ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( A  /L N )  =  ( if ( ( N  <  0 
 /\  A  <  0
 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
  ( abs `  N ) ) ) )
 
Theoremlgsfcl3 15346* Closure of the function  F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  (
 ( A  /L
 n ) ^ ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  F : NN --> ZZ )
 
Theoremlgsval4a 15347* Same as lgsval4 15345 for positive  N. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  (
 ( A  /L
 n ) ^ ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( ( A  e.  ZZ  /\  N  e.  NN )  ->  ( A  /L N )  =  ( 
 seq 1 (  x. 
 ,  F ) `  N ) )
 
Theoremlgscl1 15348 The value of the Legendre symbol is either -1 or 0 or 1. (Contributed by AV, 13-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L N )  e.  { -u 1 ,  0 ,  1 } )
 
Theoremlgsneg 15349 The Legendre symbol is either even or odd under negation with respect to the second parameter according to the sign of the first. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( A  /L -u N )  =  ( if ( A  <  0 ,  -u 1 ,  1 )  x.  ( A 
 /L N ) ) )
 
Theoremlgsneg1 15350 The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  NN0  /\  N  e.  ZZ )  ->  ( A  /L -u N )  =  ( A  /L N ) )
 
Theoremlgsmod 15351 The Legendre (Jacobi) symbol is preserved under reduction  mod  n when  n is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\ 
 -.  2  ||  N )  ->  ( ( A 
 mod  N )  /L N )  =  ( A  /L N ) )
 
Theoremlgsdilem 15352 Lemma for lgsdi 15362 and lgsdir 15360: the sign part of the Legendre symbol is multiplicative. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  if ( ( N  <  0 
 /\  ( A  x.  B )  <  0 ) ,  -u 1 ,  1 )  =  ( if ( ( N  <  0 
 /\  A  <  0
 ) ,  -u 1 ,  1 )  x. 
 if ( ( N  <  0  /\  B  <  0 ) ,  -u 1 ,  1 ) ) )
 
Theoremlgsdir2lem1 15353 Lemma for lgsdir2 15358. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( 1 
 mod  8 )  =  1  /\  ( -u 1  mod  8 )  =  7 )  /\  (
 ( 3  mod  8
 )  =  3  /\  ( -u 3  mod  8
 )  =  5 ) )
 
Theoremlgsdir2lem2 15354 Lemma for lgsdir2 15358. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( K  e.  ZZ  /\  2  ||  ( K  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ...
 K )  ->  ( A  mod  8 )  e.  S ) ) )   &    |-  M  =  ( K  +  1 )   &    |-  N  =  ( M  +  1 )   &    |-  N  e.  S   =>    |-  ( N  e.  ZZ  /\  2  ||  ( N  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  (
 0 ... N )  ->  ( A  mod  8 )  e.  S ) ) )
 
Theoremlgsdir2lem3 15355 Lemma for lgsdir2 15358. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A 
 mod  8 )  e.  ( { 1 ,  7 }  u.  {
 3 ,  5 } ) )
 
Theoremlgsdir2lem4 15356 Lemma for lgsdir2 15358. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  e. 
 { 1 ,  7 } )  ->  (
 ( ( A  x.  B )  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  { 1 ,  7 } )
 )
 
Theoremlgsdir2lem5 15357 Lemma for lgsdir2 15358. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  (
 ( A  mod  8
 )  e.  { 3 ,  5 }  /\  ( B  mod  8 )  e.  { 3 ,  5 } ) ) 
 ->  ( ( A  x.  B )  mod  8 )  e.  { 1 ,  7 } )
 
Theoremlgsdir2 15358 The Legendre symbol is completely multiplicative at  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L
 2 ) ) )
 
Theoremlgsdirprm 15359 The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  P  e.  Prime )  ->  ( ( A  x.  B )  /L P )  =  ( ( A  /L P )  x.  ( B  /L P ) ) )
 
Theoremlgsdir 15360 The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that  A and  B are odd positive integers). (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
 
Theoremlgsdilem2 15361* Lemma for lgsdi 15362. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  ( ph  ->  A  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  M  =/=  0 )   &    |-  ( ph  ->  N  =/=  0 )   &    |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
 ( n  pCnt  M ) ) ,  1 ) )   =>    |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `  ( abs `  M ) )  =  (  seq 1
 (  x.  ,  F ) `  ( abs `  ( M  x.  N ) ) ) )
 
Theoremlgsdi 15362 The Legendre symbol is completely multiplicative in its right argument. Generalization of theorem 9.9(b) in [ApostolNT] p. 188 (which assumes that  M and  N are odd positive integers). (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ( ( A  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =/=  0  /\  N  =/=  0 ) )  ->  ( A  /L ( M  x.  N ) )  =  ( ( A  /L M )  x.  ( A  /L N ) ) )
 
Theoremlgsne0 15363 The Legendre symbol is nonzero (and hence equal to  1 or  -u 1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( A 
 /L N )  =/=  0  <->  ( A  gcd  N )  =  1 ) )
 
Theoremlgsabs1 15364 The Legendre symbol is nonzero (and hence equal to  1 or  -u 1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  ( A  gcd  N )  =  1 ) )
 
Theoremlgssq 15365 The Legendre symbol at a square is equal to  1. Together with lgsmod 15351 this implies that the Legendre symbol takes value  1 at every quadratic residue. (Contributed by Mario Carneiro, 5-Feb-2015.) (Revised by AV, 20-Jul-2021.)
 |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  N  e.  ZZ  /\  ( A 
 gcd  N )  =  1 )  ->  ( ( A ^ 2 )  /L N )  =  1 )
 
Theoremlgssq2 15366 The Legendre symbol at a square is equal to  1. (Contributed by Mario Carneiro, 5-Feb-2015.)
 |-  ( ( A  e.  ZZ  /\  N  e.  NN  /\  ( A  gcd  N )  =  1 )  ->  ( A  /L
 ( N ^ 2
 ) )  =  1 )
 
Theoremlgsprme0 15367 The Legendre symbol at any prime (even at 2) is  0 iff the prime does not divide the first argument. See definition in [ApostolNT] p. 179. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  P  e.  Prime ) 
 ->  ( ( A  /L P )  =  0  <-> 
 ( A  mod  P )  =  0 )
 )
 
Theorem1lgs 15368 The Legendre symbol at  1. See example 1 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 28-Apr-2016.)
 |-  ( N  e.  ZZ  ->  ( 1  /L N )  =  1
 )
 
Theoremlgs1 15369 The Legendre symbol at  1. See definition in [ApostolNT] p. 188. (Contributed by Mario Carneiro, 28-Apr-2016.)
 |-  ( A  e.  ZZ  ->  ( A  /L
 1 )  =  1 )
 
Theoremlgsmodeq 15370 The Legendre (Jacobi) symbol is preserved under reduction  mod  n when  n is odd. Theorem 9.9(c) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( N  e.  NN  /\ 
 -.  2  ||  N ) )  ->  ( ( A  mod  N )  =  ( B  mod  N )  ->  ( A  /L N )  =  ( B  /L N ) ) )
 
Theoremlgsmulsqcoprm 15371 The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
 |-  ( ( ( A  e.  ZZ  /\  A  =/=  0 )  /\  ( B  e.  ZZ  /\  B  =/=  0 )  /\  ( N  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )  ->  ( ( ( A ^ 2 )  x.  B )  /L N )  =  ( B  /L N ) )
 
Theoremlgsdirnn0 15372 Variation on lgsdir 15360 valid for all  A ,  B but only for positive  N. (The exact location of the failure of this law is for  A  =  0,  B  <  0,  N  =  -u 1 in which case  ( 0  /L -u 1
)  =  1 but  ( B  /L -u 1 )  = 
-u 1.) (Contributed by Mario Carneiro, 28-Apr-2016.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN0 )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
 
Theoremlgsdinn0 15373 Variation on lgsdi 15362 valid for all  M ,  N but only for positive  A. (The exact location of the failure of this law is for  A  =  -u
1,  M  =  0, and some  N in which case  ( -u 1  /L 0 )  =  1 but  ( -u 1  /L N )  = 
-u 1 when  -u 1 is not a quadratic residue mod  N.) (Contributed by Mario Carneiro, 28-Apr-2016.)
 |-  ( ( A  e.  NN0  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
 ( M  x.  N ) )  =  (
 ( A  /L M )  x.  ( A  /L N ) ) )
 
11.3.5  Gauss' Lemma

Gauss' Lemma is valid for any integer not dividing the given prime number. In the following, only the special case for 2 (not dividing any odd prime) is proven, see gausslemma2d 15394. The general case is still to prove.

 
Theoremgausslemma2dlem0a 15374 Auxiliary lemma 1 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   =>    |-  ( ph  ->  P  e.  NN )
 
Theoremgausslemma2dlem0b 15375 Auxiliary lemma 2 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   =>    |-  ( ph  ->  H  e.  NN )
 
Theoremgausslemma2dlem0c 15376 Auxiliary lemma 3 for gausslemma2d 15394. (Contributed by AV, 13-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   =>    |-  ( ph  ->  (
 ( ! `  H )  gcd  P )  =  1 )
 
Theoremgausslemma2dlem0d 15377 Auxiliary lemma 4 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  M  =  ( |_ `  ( P  /  4 ) )   =>    |-  ( ph  ->  M  e.  NN0 )
 
Theoremgausslemma2dlem0e 15378 Auxiliary lemma 5 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  M  =  ( |_ `  ( P  /  4 ) )   =>    |-  ( ph  ->  ( M  x.  2 )  <  ( P  /  2 ) )
 
Theoremgausslemma2dlem0f 15379 Auxiliary lemma 6 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  M  =  ( |_ `  ( P  /  4 ) )   &    |-  H  =  ( ( P  -  1 )  / 
 2 )   =>    |-  ( ph  ->  ( M  +  1 )  <_  H )
 
Theoremgausslemma2dlem0g 15380 Auxiliary lemma 7 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  M  =  ( |_ `  ( P  /  4 ) )   &    |-  H  =  ( ( P  -  1 )  / 
 2 )   =>    |-  ( ph  ->  M  <_  H )
 
Theoremgausslemma2dlem0h 15381 Auxiliary lemma 8 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  M  =  ( |_ `  ( P  /  4 ) )   &    |-  H  =  ( ( P  -  1 )  / 
 2 )   &    |-  N  =  ( H  -  M )   =>    |-  ( ph  ->  N  e.  NN0 )
 
Theoremgausslemma2dlem0i 15382 Auxiliary lemma 9 for gausslemma2d 15394. (Contributed by AV, 14-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  M  =  ( |_ `  ( P  /  4 ) )   &    |-  H  =  ( ( P  -  1 )  / 
 2 )   &    |-  N  =  ( H  -  M )   =>    |-  ( ph  ->  ( (
 ( 2  /L P )  mod  P )  =  ( ( -u 1 ^ N )  mod  P )  ->  ( 2  /L P )  =  ( -u 1 ^ N ) ) )
 
Theoremgausslemma2dlem1a 15383* Lemma for gausslemma2dlem1 15386. (Contributed by AV, 1-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   =>    |-  ( ph  ->  ran  R  =  ( 1 ... H ) )
 
Theoremgausslemma2dlem1cl 15384 Lemma for gausslemma2dlem1 15386. Closure of the body of the definition of  R. (Contributed by Jim Kingdon, 10-Aug-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   &    |-  ( ph  ->  A  e.  ( 1 ...
 H ) )   =>    |-  ( ph  ->  if ( ( A  x.  2 )  <  ( P 
 /  2 ) ,  ( A  x.  2
 ) ,  ( P  -  ( A  x.  2 ) ) )  e.  ZZ )
 
Theoremgausslemma2dlem1f1o 15385* Lemma for gausslemma2dlem1 15386. (Contributed by Jim Kingdon, 9-Aug-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   =>    |-  ( ph  ->  R : ( 1 ...
 H ) -1-1-onto-> ( 1 ... H ) )
 
Theoremgausslemma2dlem1 15386* Lemma 1 for gausslemma2d 15394. (Contributed by AV, 5-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   =>    |-  ( ph  ->  ( ! `  H )  = 
 prod_ k  e.  (
 1 ... H ) ( R `  k ) )
 
Theoremgausslemma2dlem2 15387* Lemma 2 for gausslemma2d 15394. (Contributed by AV, 4-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   &    |-  M  =  ( |_ `  ( P 
 /  4 ) )   =>    |-  ( ph  ->  A. k  e.  ( 1 ... M ) ( R `  k )  =  (
 k  x.  2 ) )
 
Theoremgausslemma2dlem3 15388* Lemma 3 for gausslemma2d 15394. (Contributed by AV, 4-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   &    |-  M  =  ( |_ `  ( P 
 /  4 ) )   =>    |-  ( ph  ->  A. k  e.  ( ( M  +  1 ) ... H ) ( R `  k )  =  ( P  -  ( k  x.  2 ) ) )
 
Theoremgausslemma2dlem4 15389* Lemma 4 for gausslemma2d 15394. (Contributed by AV, 16-Jun-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   &    |-  M  =  ( |_ `  ( P 
 /  4 ) )   =>    |-  ( ph  ->  ( ! `  H )  =  (
 prod_ k  e.  (
 1 ... M ) ( R `  k )  x.  prod_ k  e.  (
 ( M  +  1 ) ... H ) ( R `  k
 ) ) )
 
Theoremgausslemma2dlem5a 15390* Lemma for gausslemma2dlem5 15391. (Contributed by AV, 8-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   &    |-  M  =  ( |_ `  ( P 
 /  4 ) )   =>    |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k )  mod  P )  =  ( prod_ k  e.  ( ( M  +  1 ) ... H ) ( -u 1  x.  ( k  x.  2
 ) )  mod  P ) )
 
Theoremgausslemma2dlem5 15391* Lemma 5 for gausslemma2d 15394. (Contributed by AV, 9-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   &    |-  M  =  ( |_ `  ( P 
 /  4 ) )   &    |-  N  =  ( H  -  M )   =>    |-  ( ph  ->  ( prod_ k  e.  ( ( M  +  1 )
 ... H ) ( R `  k ) 
 mod  P )  =  ( ( ( -u 1 ^ N )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( k  x.  2 ) )  mod  P ) )
 
Theoremgausslemma2dlem6 15392* Lemma 6 for gausslemma2d 15394. (Contributed by AV, 16-Jun-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   &    |-  M  =  ( |_ `  ( P 
 /  4 ) )   &    |-  N  =  ( H  -  M )   =>    |-  ( ph  ->  (
 ( ! `  H )  mod  P )  =  ( ( ( (
 -u 1 ^ N )  x.  ( 2 ^ H ) )  x.  ( ! `  H ) )  mod  P ) )
 
Theoremgausslemma2dlem7 15393* Lemma 7 for gausslemma2d 15394. (Contributed by AV, 13-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   &    |-  M  =  ( |_ `  ( P 
 /  4 ) )   &    |-  N  =  ( H  -  M )   =>    |-  ( ph  ->  (
 ( ( -u 1 ^ N )  x.  (
 2 ^ H ) )  mod  P )  =  1 )
 
Theoremgausslemma2d 15394* Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer  2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  H  =  ( ( P  -  1 )  /  2
 )   &    |-  R  =  ( x  e.  ( 1 ...
 H )  |->  if (
 ( x  x.  2
 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) ) )   &    |-  M  =  ( |_ `  ( P 
 /  4 ) )   &    |-  N  =  ( H  -  M )   =>    |-  ( ph  ->  (
 2  /L P )  =  ( -u 1 ^ N ) )
 
11.3.6  Quadratic reciprocity
 
Theoremlgseisenlem1 15395* Lemma for lgseisen 15399. If  R ( u )  =  ( Q  x.  u )  mod  P and  M ( u )  =  ( -u
1 ^ R ( u ) )  x.  R ( u ), then for any even  1  <_  u  <_  P  -  1,  M ( u ) is also an even integer  1  <_  M
( u )  <_  P  -  1. To simplify these statements, we divide all the even numbers by  2, so that it becomes the statement that  M ( x  /  2 )  =  ( -u 1 ^ R ( x  / 
2 ) )  x.  R ( x  / 
2 )  /  2 is an integer between  1 and  ( P  -  1 )  / 
2. (Contributed by Mario Carneiro, 17-Jun-2015.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  R  =  ( ( Q  x.  ( 2  x.  x ) )  mod  P )   &    |-  M  =  ( x  e.  ( 1 ... (
 ( P  -  1
 )  /  2 )
 )  |->  ( ( ( ( -u 1 ^ R )  x.  R )  mod  P )  /  2 ) )   =>    |-  ( ph  ->  M : ( 1 ... ( ( P  -  1 )  /  2
 ) ) --> ( 1
 ... ( ( P  -  1 )  / 
 2 ) ) )
 
Theoremlgseisenlem2 15396* Lemma for lgseisen 15399. The function  M is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 17-Jun-2015.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  R  =  ( ( Q  x.  ( 2  x.  x ) )  mod  P )   &    |-  M  =  ( x  e.  ( 1 ... (
 ( P  -  1
 )  /  2 )
 )  |->  ( ( ( ( -u 1 ^ R )  x.  R )  mod  P )  /  2 ) )   &    |-  S  =  ( ( Q  x.  (
 2  x.  y ) )  mod  P )   =>    |-  ( ph  ->  M :
 ( 1 ... (
 ( P  -  1
 )  /  2 )
 )
 -1-1-onto-> ( 1 ... (
 ( P  -  1
 )  /  2 )
 ) )
 
Theoremlgseisenlem3 15397* Lemma for lgseisen 15399. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  R  =  ( ( Q  x.  ( 2  x.  x ) )  mod  P )   &    |-  M  =  ( x  e.  ( 1 ... (
 ( P  -  1
 )  /  2 )
 )  |->  ( ( ( ( -u 1 ^ R )  x.  R )  mod  P )  /  2 ) )   &    |-  S  =  ( ( Q  x.  (
 2  x.  y ) )  mod  P )   &    |-  Y  =  (ℤ/n `  P )   &    |-  G  =  (mulGrp `  Y )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2
 ) )  |->  ( L `
  ( ( -u 1 ^ R )  x.  Q ) ) ) )  =  ( 1r
 `  Y ) )
 
Theoremlgseisenlem4 15398* Lemma for lgseisen 15399. (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  R  =  ( ( Q  x.  ( 2  x.  x ) )  mod  P )   &    |-  M  =  ( x  e.  ( 1 ... (
 ( P  -  1
 )  /  2 )
 )  |->  ( ( ( ( -u 1 ^ R )  x.  R )  mod  P )  /  2 ) )   &    |-  S  =  ( ( Q  x.  (
 2  x.  y ) )  mod  P )   &    |-  Y  =  (ℤ/n `  P )   &    |-  G  =  (mulGrp `  Y )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( ph  ->  ( ( Q ^ ( ( P  -  1 )  / 
 2 ) )  mod  P )  =  ( (
 -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2
 ) ) ( |_ `  ( ( Q  /  P )  x.  (
 2  x.  x ) ) ) )  mod  P ) )
 
Theoremlgseisen 15399* Eisenstein's lemma, an expression for 
( P  /L
Q ) when  P ,  Q are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   =>    |-  ( ph  ->  ( Q  /L P )  =  ( -u 1 ^ sum_ x  e.  (
 1 ... ( ( P  -  1 )  / 
 2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )
 
Theoremlgsquadlemsfi 15400* Lemma for lgsquad 15405. 
S is finite. (Contributed by Jim Kingdon, 16-Sep-2025.)
 |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )   &    |-  ( ph  ->  P  =/=  Q )   &    |-  M  =  ( ( P  -  1 )  /  2
 )   &    |-  N  =  ( ( Q  -  1 ) 
 /  2 )   &    |-  S  =  { <. x ,  y >.  |  ( ( x  e.  ( 1 ...
 M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
 ( x  x.  Q ) ) }   =>    |-  ( ph  ->  S  e.  Fin )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >