| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cnd | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| nn0cnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0red.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 2 | 1 | nn0red 9303 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | recnd 8055 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7877 ℕ0cn0 9249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-int 3875 df-inn 8991 df-n0 9250 |
| This theorem is referenced by: modsumfzodifsn 10488 addmodlteq 10490 uzennn 10528 expaddzaplem 10674 expaddzap 10675 expmulzap 10677 nn0le2msqd 10811 nn0opthlem1d 10812 nn0opthd 10814 nn0opth2d 10815 facdiv 10830 bcp1n 10853 bcn2m1 10861 bcn2p1 10862 omgadd 10894 fihashssdif 10910 hashdifpr 10912 hashxp 10918 zfz1isolemsplit 10930 zfz1isolem1 10932 fsumconst 11619 hash2iun1dif1 11645 binomlem 11648 bcxmas 11654 arisum 11663 arisum2 11664 mertensabs 11702 effsumlt 11857 dvdsexp 12026 nn0ob 12073 divalglemnn 12083 divalgmod 12092 bezoutlemnewy 12163 bezoutlema 12166 bezoutlemb 12167 mulgcd 12183 absmulgcd 12184 mulgcdr 12185 gcddiv 12186 lcmgcd 12246 lcmid 12248 lcm1 12249 3lcm2e6woprm 12254 6lcm4e12 12255 mulgcddvds 12262 qredeu 12265 divgcdcoprm0 12269 divgcdcoprmex 12270 cncongr1 12271 cncongr2 12272 pw2dvdseulemle 12335 phiprmpw 12390 eulerthlema 12398 prmdiveq 12404 odzdvds 12414 powm2modprm 12421 coprimeprodsq 12426 pceulem 12463 pczpre 12466 pcqmul 12472 pcaddlem 12508 pcmpt 12512 pcmpt2 12513 sumhashdc 12516 pcfac 12519 oddprmdvds 12523 mul4sq 12563 4sqlem12 12571 mulgnn0dir 13282 mulgnn0ass 13288 plyaddlem1 14983 plymullem1 14984 dvply1 15001 dvply2g 15002 0sgm 15221 sgmppw 15228 lgslem1 15241 lgsvalmod 15260 gausslemma2dlem6 15308 gausslemma2d 15310 lgseisenlem2 15312 lgseisenlem3 15313 lgsquadlem1 15318 lgsquadlem2 15319 lgsquad2lem2 15323 m1lgs 15326 2lgslem1c 15331 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 2sqlem8 15364 |
| Copyright terms: Public domain | W3C validator |