![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0cnd | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0cnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
2 | 1 | nn0red 9297 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | recnd 8050 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℂcc 7872 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-int 3872 df-inn 8985 df-n0 9244 |
This theorem is referenced by: modsumfzodifsn 10470 addmodlteq 10472 uzennn 10510 expaddzaplem 10656 expaddzap 10657 expmulzap 10659 nn0le2msqd 10793 nn0opthlem1d 10794 nn0opthd 10796 nn0opth2d 10797 facdiv 10812 bcp1n 10835 bcn2m1 10843 bcn2p1 10844 omgadd 10876 fihashssdif 10892 hashdifpr 10894 hashxp 10900 zfz1isolemsplit 10912 zfz1isolem1 10914 fsumconst 11600 hash2iun1dif1 11626 binomlem 11629 bcxmas 11635 arisum 11644 arisum2 11645 mertensabs 11683 effsumlt 11838 dvdsexp 12006 nn0ob 12052 divalglemnn 12062 divalgmod 12071 bezoutlemnewy 12136 bezoutlema 12139 bezoutlemb 12140 mulgcd 12156 absmulgcd 12157 mulgcdr 12158 gcddiv 12159 lcmgcd 12219 lcmid 12221 lcm1 12222 3lcm2e6woprm 12227 6lcm4e12 12228 mulgcddvds 12235 qredeu 12238 divgcdcoprm0 12242 divgcdcoprmex 12243 cncongr1 12244 cncongr2 12245 pw2dvdseulemle 12308 phiprmpw 12363 eulerthlema 12371 prmdiveq 12377 odzdvds 12386 powm2modprm 12393 coprimeprodsq 12398 pceulem 12435 pczpre 12438 pcqmul 12444 pcaddlem 12480 pcmpt 12484 pcmpt2 12485 sumhashdc 12488 pcfac 12491 oddprmdvds 12495 mul4sq 12535 4sqlem12 12543 mulgnn0dir 13225 mulgnn0ass 13231 plyaddlem1 14926 plymullem1 14927 dvply1 14943 lgslem1 15157 lgsvalmod 15176 gausslemma2dlem6 15224 gausslemma2d 15226 lgseisenlem2 15228 lgseisenlem3 15229 lgsquadlem1 15234 lgsquadlem2 15235 lgsquad2lem2 15239 m1lgs 15242 2lgslem1c 15247 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 2sqlem8 15280 |
Copyright terms: Public domain | W3C validator |