| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0cnd | GIF version | ||
| Description: A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| nn0cnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0red.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 2 | 1 | nn0red 9322 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 2 | recnd 8074 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7896 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 ax-rnegex 8007 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-int 3876 df-inn 9010 df-n0 9269 |
| This theorem is referenced by: modsumfzodifsn 10507 addmodlteq 10509 uzennn 10547 expaddzaplem 10693 expaddzap 10694 expmulzap 10696 nn0le2msqd 10830 nn0opthlem1d 10831 nn0opthd 10833 nn0opth2d 10834 facdiv 10849 bcp1n 10872 bcn2m1 10880 bcn2p1 10881 omgadd 10913 fihashssdif 10929 hashdifpr 10931 hashxp 10937 zfz1isolemsplit 10949 zfz1isolem1 10951 fsumconst 11638 hash2iun1dif1 11664 binomlem 11667 bcxmas 11673 arisum 11682 arisum2 11683 mertensabs 11721 effsumlt 11876 dvdsexp 12045 nn0ob 12092 divalglemnn 12102 divalgmod 12111 bitsinv1lem 12145 bezoutlemnewy 12190 bezoutlema 12193 bezoutlemb 12194 mulgcd 12210 absmulgcd 12211 mulgcdr 12212 gcddiv 12213 lcmgcd 12273 lcmid 12275 lcm1 12276 3lcm2e6woprm 12281 6lcm4e12 12282 mulgcddvds 12289 qredeu 12292 divgcdcoprm0 12296 divgcdcoprmex 12297 cncongr1 12298 cncongr2 12299 pw2dvdseulemle 12362 phiprmpw 12417 eulerthlema 12425 prmdiveq 12431 odzdvds 12441 powm2modprm 12448 coprimeprodsq 12453 pceulem 12490 pczpre 12493 pcqmul 12499 pcaddlem 12535 pcmpt 12539 pcmpt2 12540 sumhashdc 12543 pcfac 12546 oddprmdvds 12550 mul4sq 12590 4sqlem12 12598 mulgnn0dir 13360 mulgnn0ass 13366 plyaddlem1 15091 plymullem1 15092 dvply1 15109 dvply2g 15110 0sgm 15329 sgmppw 15336 lgslem1 15349 lgsvalmod 15368 gausslemma2dlem6 15416 gausslemma2d 15418 lgseisenlem2 15420 lgseisenlem3 15421 lgsquadlem1 15426 lgsquadlem2 15427 lgsquad2lem2 15431 m1lgs 15434 2lgslem1c 15439 2lgslem3a 15442 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 2sqlem8 15472 |
| Copyright terms: Public domain | W3C validator |