Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0cnd | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0cnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
2 | 1 | nn0red 9168 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | recnd 7927 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℂcc 7751 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-int 3825 df-inn 8858 df-n0 9115 |
This theorem is referenced by: modsumfzodifsn 10331 addmodlteq 10333 uzennn 10371 expaddzaplem 10498 expaddzap 10499 expmulzap 10501 nn0le2msqd 10632 nn0opthlem1d 10633 nn0opthd 10635 nn0opth2d 10636 facdiv 10651 bcp1n 10674 bcn2m1 10682 bcn2p1 10683 omgadd 10715 fihashssdif 10731 hashdifpr 10733 hashxp 10739 zfz1isolemsplit 10751 zfz1isolem1 10753 fsumconst 11395 hash2iun1dif1 11421 binomlem 11424 bcxmas 11430 arisum 11439 arisum2 11440 mertensabs 11478 effsumlt 11633 dvdsexp 11799 nn0ob 11845 divalglemnn 11855 divalgmod 11864 bezoutlemnewy 11929 bezoutlema 11932 bezoutlemb 11933 mulgcd 11949 absmulgcd 11950 mulgcdr 11951 gcddiv 11952 lcmgcd 12010 lcmid 12012 lcm1 12013 3lcm2e6woprm 12018 6lcm4e12 12019 mulgcddvds 12026 qredeu 12029 divgcdcoprm0 12033 divgcdcoprmex 12034 cncongr1 12035 cncongr2 12036 pw2dvdseulemle 12099 phiprmpw 12154 eulerthlema 12162 prmdiveq 12168 odzdvds 12177 powm2modprm 12184 coprimeprodsq 12189 pceulem 12226 pczpre 12229 pcqmul 12235 pcaddlem 12270 pcmpt 12273 pcmpt2 12274 sumhashdc 12277 pcfac 12280 oddprmdvds 12284 mul4sq 12324 lgslem1 13541 lgsvalmod 13560 2sqlem8 13599 |
Copyright terms: Public domain | W3C validator |