Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0cnd | GIF version |
Description: A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0cnd | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0red.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
2 | 1 | nn0red 9189 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | recnd 7948 | 1 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℂcc 7772 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-int 3832 df-inn 8879 df-n0 9136 |
This theorem is referenced by: modsumfzodifsn 10352 addmodlteq 10354 uzennn 10392 expaddzaplem 10519 expaddzap 10520 expmulzap 10522 nn0le2msqd 10653 nn0opthlem1d 10654 nn0opthd 10656 nn0opth2d 10657 facdiv 10672 bcp1n 10695 bcn2m1 10703 bcn2p1 10704 omgadd 10737 fihashssdif 10753 hashdifpr 10755 hashxp 10761 zfz1isolemsplit 10773 zfz1isolem1 10775 fsumconst 11417 hash2iun1dif1 11443 binomlem 11446 bcxmas 11452 arisum 11461 arisum2 11462 mertensabs 11500 effsumlt 11655 dvdsexp 11821 nn0ob 11867 divalglemnn 11877 divalgmod 11886 bezoutlemnewy 11951 bezoutlema 11954 bezoutlemb 11955 mulgcd 11971 absmulgcd 11972 mulgcdr 11973 gcddiv 11974 lcmgcd 12032 lcmid 12034 lcm1 12035 3lcm2e6woprm 12040 6lcm4e12 12041 mulgcddvds 12048 qredeu 12051 divgcdcoprm0 12055 divgcdcoprmex 12056 cncongr1 12057 cncongr2 12058 pw2dvdseulemle 12121 phiprmpw 12176 eulerthlema 12184 prmdiveq 12190 odzdvds 12199 powm2modprm 12206 coprimeprodsq 12211 pceulem 12248 pczpre 12251 pcqmul 12257 pcaddlem 12292 pcmpt 12295 pcmpt2 12296 sumhashdc 12299 pcfac 12302 oddprmdvds 12306 mul4sq 12346 lgslem1 13695 lgsvalmod 13714 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |