ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0bits GIF version

Theorem 0bits 12340
Description: The bits of zero. (Contributed by Mario Carneiro, 6-Sep-2016.)
Assertion
Ref Expression
0bits (bits‘0) = ∅

Proof of Theorem 0bits
StepHypRef Expression
1 c0ex 8081 . . . . . . 7 0 ∈ V
21snid 3668 . . . . . 6 0 ∈ {0}
3 fzo01 10362 . . . . . 6 (0..^1) = {0}
42, 3eleqtrri 2282 . . . . 5 0 ∈ (0..^1)
5 2cn 9122 . . . . . . 7 2 ∈ ℂ
6 exp0 10705 . . . . . . 7 (2 ∈ ℂ → (2↑0) = 1)
75, 6ax-mp 5 . . . . . 6 (2↑0) = 1
87oveq2i 5967 . . . . 5 (0..^(2↑0)) = (0..^1)
94, 8eleqtrri 2282 . . . 4 0 ∈ (0..^(2↑0))
10 0z 9398 . . . . 5 0 ∈ ℤ
11 0nn0 9325 . . . . 5 0 ∈ ℕ0
12 bitsfzo 12336 . . . . 5 ((0 ∈ ℤ ∧ 0 ∈ ℕ0) → (0 ∈ (0..^(2↑0)) ↔ (bits‘0) ⊆ (0..^0)))
1310, 11, 12mp2an 426 . . . 4 (0 ∈ (0..^(2↑0)) ↔ (bits‘0) ⊆ (0..^0))
149, 13mpbi 145 . . 3 (bits‘0) ⊆ (0..^0)
15 fzo0 10307 . . 3 (0..^0) = ∅
1614, 15sseqtri 3231 . 2 (bits‘0) ⊆ ∅
17 0ss 3503 . 2 ∅ ⊆ (bits‘0)
1816, 17eqssi 3213 1 (bits‘0) = ∅
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2177  wss 3170  c0 3464  {csn 3637  cfv 5279  (class class class)co 5956  cc 7938  0cc0 7940  1c1 7941  2c2 9102  0cn0 9310  cz 9387  ..^cfzo 10279  cexp 10700  bitscbits 12321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-isom 5288  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-sup 7100  df-inf 7101  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-z 9388  df-uz 9664  df-q 9756  df-rp 9791  df-fz 10146  df-fzo 10280  df-fl 10430  df-seqfrec 10610  df-exp 10701  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380  df-dvds 12169  df-bits 12322
This theorem is referenced by:  m1bits  12341
  Copyright terms: Public domain W3C validator