| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mplnegfi | GIF version | ||
| Description: The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024.) |
| Ref | Expression |
|---|---|
| mplneg.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplneg.b | ⊢ 𝐵 = (Base‘𝑃) |
| mplneg.n | ⊢ 𝑁 = (invg‘𝑅) |
| mplneg.m | ⊢ 𝑀 = (invg‘𝑃) |
| mplnegfi.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| mplneg.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| mplneg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mplnegfi | ⊢ (𝜑 → (𝑀‘𝑋) = (𝑁 ∘ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplneg.m | . . . 4 ⊢ 𝑀 = (invg‘𝑃) | |
| 2 | 1 | fveq1i 5584 | . . 3 ⊢ (𝑀‘𝑋) = ((invg‘𝑃)‘𝑋) |
| 3 | mplnegfi.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
| 4 | mplneg.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 5 | mplneg.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 6 | eqid 2206 | . . . . . . 7 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 7 | mplneg.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
| 8 | 5, 6, 7 | mplval2g 14501 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → 𝑃 = ((𝐼 mPwSer 𝑅) ↾s 𝐵)) |
| 9 | 3, 4, 8 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → 𝑃 = ((𝐼 mPwSer 𝑅) ↾s 𝐵)) |
| 10 | 9 | fveq2d 5587 | . . . 4 ⊢ (𝜑 → (invg‘𝑃) = (invg‘((𝐼 mPwSer 𝑅) ↾s 𝐵))) |
| 11 | 10 | fveq1d 5585 | . . 3 ⊢ (𝜑 → ((invg‘𝑃)‘𝑋) = ((invg‘((𝐼 mPwSer 𝑅) ↾s 𝐵))‘𝑋)) |
| 12 | 2, 11 | eqtrid 2251 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) = ((invg‘((𝐼 mPwSer 𝑅) ↾s 𝐵))‘𝑋)) |
| 13 | 6, 5, 7, 3, 4 | mplsubgfi 14507 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘(𝐼 mPwSer 𝑅))) |
| 14 | mplneg.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 15 | eqid 2206 | . . . 4 ⊢ ((𝐼 mPwSer 𝑅) ↾s 𝐵) = ((𝐼 mPwSer 𝑅) ↾s 𝐵) | |
| 16 | eqid 2206 | . . . 4 ⊢ (invg‘(𝐼 mPwSer 𝑅)) = (invg‘(𝐼 mPwSer 𝑅)) | |
| 17 | eqid 2206 | . . . 4 ⊢ (invg‘((𝐼 mPwSer 𝑅) ↾s 𝐵)) = (invg‘((𝐼 mPwSer 𝑅) ↾s 𝐵)) | |
| 18 | 15, 16, 17 | subginv 13561 | . . 3 ⊢ ((𝐵 ∈ (SubGrp‘(𝐼 mPwSer 𝑅)) ∧ 𝑋 ∈ 𝐵) → ((invg‘(𝐼 mPwSer 𝑅))‘𝑋) = ((invg‘((𝐼 mPwSer 𝑅) ↾s 𝐵))‘𝑋)) |
| 19 | 13, 14, 18 | syl2anc 411 | . 2 ⊢ (𝜑 → ((invg‘(𝐼 mPwSer 𝑅))‘𝑋) = ((invg‘((𝐼 mPwSer 𝑅) ↾s 𝐵))‘𝑋)) |
| 20 | eqid 2206 | . . 3 ⊢ {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} = {𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑥 “ ℕ) ∈ Fin} | |
| 21 | mplneg.n | . . 3 ⊢ 𝑁 = (invg‘𝑅) | |
| 22 | eqid 2206 | . . 3 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 23 | 5, 6, 7, 22 | mplbasss 14502 | . . . 4 ⊢ 𝐵 ⊆ (Base‘(𝐼 mPwSer 𝑅)) |
| 24 | 23, 14 | sselid 3192 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 25 | 6, 3, 4, 20, 21, 22, 16, 24 | psrneg 14493 | . 2 ⊢ (𝜑 → ((invg‘(𝐼 mPwSer 𝑅))‘𝑋) = (𝑁 ∘ 𝑋)) |
| 26 | 12, 19, 25 | 3eqtr2d 2245 | 1 ⊢ (𝜑 → (𝑀‘𝑋) = (𝑁 ∘ 𝑋)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {crab 2489 ◡ccnv 4678 “ cima 4682 ∘ ccom 4683 ‘cfv 5276 (class class class)co 5951 ↑𝑚 cmap 6742 Fincfn 6834 ℕcn 9043 ℕ0cn0 9302 Basecbs 12876 ↾s cress 12877 Grpcgrp 13376 invgcminusg 13377 SubGrpcsubg 13547 mPwSer cmps 14467 mPoly cmpl 14468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-1o 6509 df-er 6627 df-map 6744 df-ixp 6793 df-en 6835 df-fin 6837 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-fz 10138 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-tset 12972 df-ple 12973 df-ds 12975 df-hom 12977 df-cco 12978 df-rest 13117 df-topn 13118 df-0g 13134 df-topgen 13136 df-pt 13137 df-prds 13143 df-pws 13166 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-subg 13550 df-psr 14469 df-mplcoe 14470 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |