| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mplsubgfi | GIF version | ||
| Description: The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
| Ref | Expression |
|---|---|
| mplsubg.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplsubg.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplsubg.u | ⊢ 𝑈 = (Base‘𝑃) |
| mplsubg.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| mplsubg.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Ref | Expression |
|---|---|
| mplsubgfi | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | mplsubg.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 3 | mplsubg.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
| 4 | eqid 2209 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 5 | 1, 2, 3, 4 | mplbasss 14625 | . . 3 ⊢ 𝑈 ⊆ (Base‘𝑆) |
| 6 | 5 | a1i 9 | . 2 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑆)) |
| 7 | mplsubg.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
| 8 | mplsubg.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 9 | 2, 1, 3, 7, 8 | mplsubgfilemm 14627 | . 2 ⊢ (𝜑 → ∃𝑗 𝑗 ∈ 𝑈) |
| 10 | 7 | ad2antrr 488 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝐼 ∈ Fin) |
| 11 | 8 | ad2antrr 488 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑅 ∈ Grp) |
| 12 | simplr 528 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑢 ∈ 𝑈) | |
| 13 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ 𝑈) | |
| 14 | eqid 2209 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 15 | 2, 1, 3, 10, 11, 12, 13, 14 | mplsubgfilemcl 14628 | . . . . 5 ⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑢(+g‘𝑆)𝑣) ∈ 𝑈) |
| 16 | 15 | ralrimiva 2583 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈) |
| 17 | 7 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝐼 ∈ Fin) |
| 18 | 8 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑅 ∈ Grp) |
| 19 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ 𝑈) | |
| 20 | eqid 2209 | . . . . 5 ⊢ (invg‘𝑆) = (invg‘𝑆) | |
| 21 | 2, 1, 3, 17, 18, 19, 20 | mplsubgfileminv 14629 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((invg‘𝑆)‘𝑢) ∈ 𝑈) |
| 22 | 16, 21 | jca 306 | . . 3 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)) |
| 23 | 22 | ralrimiva 2583 | . 2 ⊢ (𝜑 → ∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)) |
| 24 | 2, 7, 8 | psrgrp 14614 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 25 | 4, 14, 20 | issubg2m 13692 | . . 3 ⊢ (𝑆 ∈ Grp → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈 ⊆ (Base‘𝑆) ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)))) |
| 26 | 24, 25 | syl 14 | . 2 ⊢ (𝜑 → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈 ⊆ (Base‘𝑆) ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)))) |
| 27 | 6, 9, 23, 26 | mpbir3and 1185 | 1 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 983 = wceq 1375 ∃wex 1518 ∈ wcel 2180 ∀wral 2488 ⊆ wss 3177 ‘cfv 5294 (class class class)co 5974 Fincfn 6857 Basecbs 12998 +gcplusg 13076 Grpcgrp 13499 invgcminusg 13500 SubGrpcsubg 13670 mPwSer cmps 14590 mPoly cmpl 14591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-of 6188 df-1st 6256 df-2nd 6257 df-1o 6532 df-er 6650 df-map 6767 df-ixp 6816 df-en 6858 df-fin 6860 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-fz 10173 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-tset 13095 df-ple 13096 df-ds 13098 df-hom 13100 df-cco 13101 df-rest 13240 df-topn 13241 df-0g 13257 df-topgen 13259 df-pt 13260 df-prds 13266 df-pws 13289 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-subg 13673 df-psr 14592 df-mplcoe 14593 |
| This theorem is referenced by: mpl0fi 14631 mplnegfi 14634 mplgrpfi 14635 |
| Copyright terms: Public domain | W3C validator |