| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mplsubgfi | GIF version | ||
| Description: The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
| Ref | Expression |
|---|---|
| mplsubg.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplsubg.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplsubg.u | ⊢ 𝑈 = (Base‘𝑃) |
| mplsubg.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| mplsubg.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| Ref | Expression |
|---|---|
| mplsubgfi | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | mplsubg.s | . . . 4 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 3 | mplsubg.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
| 4 | eqid 2206 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 5 | 1, 2, 3, 4 | mplbasss 14502 | . . 3 ⊢ 𝑈 ⊆ (Base‘𝑆) |
| 6 | 5 | a1i 9 | . 2 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑆)) |
| 7 | mplsubg.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
| 8 | mplsubg.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 9 | 2, 1, 3, 7, 8 | mplsubgfilemm 14504 | . 2 ⊢ (𝜑 → ∃𝑗 𝑗 ∈ 𝑈) |
| 10 | 7 | ad2antrr 488 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝐼 ∈ Fin) |
| 11 | 8 | ad2antrr 488 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑅 ∈ Grp) |
| 12 | simplr 528 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑢 ∈ 𝑈) | |
| 13 | simpr 110 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ 𝑈) | |
| 14 | eqid 2206 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 15 | 2, 1, 3, 10, 11, 12, 13, 14 | mplsubgfilemcl 14505 | . . . . 5 ⊢ (((𝜑 ∧ 𝑢 ∈ 𝑈) ∧ 𝑣 ∈ 𝑈) → (𝑢(+g‘𝑆)𝑣) ∈ 𝑈) |
| 16 | 15 | ralrimiva 2580 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈) |
| 17 | 7 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝐼 ∈ Fin) |
| 18 | 8 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑅 ∈ Grp) |
| 19 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → 𝑢 ∈ 𝑈) | |
| 20 | eqid 2206 | . . . . 5 ⊢ (invg‘𝑆) = (invg‘𝑆) | |
| 21 | 2, 1, 3, 17, 18, 19, 20 | mplsubgfileminv 14506 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → ((invg‘𝑆)‘𝑢) ∈ 𝑈) |
| 22 | 16, 21 | jca 306 | . . 3 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑈) → (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)) |
| 23 | 22 | ralrimiva 2580 | . 2 ⊢ (𝜑 → ∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)) |
| 24 | 2, 7, 8 | psrgrp 14491 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 25 | 4, 14, 20 | issubg2m 13569 | . . 3 ⊢ (𝑆 ∈ Grp → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈 ⊆ (Base‘𝑆) ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)))) |
| 26 | 24, 25 | syl 14 | . 2 ⊢ (𝜑 → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈 ⊆ (Base‘𝑆) ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑢 ∈ 𝑈 (∀𝑣 ∈ 𝑈 (𝑢(+g‘𝑆)𝑣) ∈ 𝑈 ∧ ((invg‘𝑆)‘𝑢) ∈ 𝑈)))) |
| 27 | 6, 9, 23, 26 | mpbir3and 1183 | 1 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3167 ‘cfv 5276 (class class class)co 5951 Fincfn 6834 Basecbs 12876 +gcplusg 12953 Grpcgrp 13376 invgcminusg 13377 SubGrpcsubg 13547 mPwSer cmps 14467 mPoly cmpl 14468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 df-1st 6233 df-2nd 6234 df-1o 6509 df-er 6627 df-map 6744 df-ixp 6793 df-en 6835 df-fin 6837 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-fz 10138 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-tset 12972 df-ple 12973 df-ds 12975 df-hom 12977 df-cco 12978 df-rest 13117 df-topn 13118 df-0g 13134 df-topgen 13136 df-pt 13137 df-prds 13143 df-pws 13166 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-subg 13550 df-psr 14469 df-mplcoe 14470 |
| This theorem is referenced by: mpl0fi 14508 mplnegfi 14511 mplgrpfi 14512 |
| Copyright terms: Public domain | W3C validator |