ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsdc GIF version

Theorem dvdsdc 12153
Description: Divisibility is decidable. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
dvdsdc ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)

Proof of Theorem dvdsdc
StepHypRef Expression
1 simpr 110 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
2 simpl 109 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℕ)
31, 2zmodcld 10497 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑀) ∈ ℕ0)
43nn0zd 9500 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑀) ∈ ℤ)
5 0z 9390 . . 3 0 ∈ ℤ
6 zdceq 9455 . . 3 (((𝑁 mod 𝑀) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝑁 mod 𝑀) = 0)
74, 5, 6sylancl 413 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID (𝑁 mod 𝑀) = 0)
8 dvdsval3 12146 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 mod 𝑀) = 0))
98dcbid 840 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (DECID 𝑀𝑁DECID (𝑁 mod 𝑀) = 0))
107, 9mpbird 167 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2177   class class class wbr 4047  (class class class)co 5951  0cc0 7932  cn 9043  cz 9379   mod cmo 10474  cdvds 12142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-n0 9303  df-z 9380  df-q 9748  df-rp 9783  df-fl 10420  df-mod 10475  df-dvds 12143
This theorem is referenced by:  zdvdsdc  12167  bitsdc  12302  gcdsupex  12322  gcdsupcl  12323  prmind2  12486  prmdc  12496  divgcdodd  12509  euclemma  12512  pw2dvdslemn  12531  hashdvds  12587  fermltl  12600  dvdsfi  12605  hashgcdeq  12606  odzcllem  12609  odzdvds  12612  fldivp1  12715  prmpwdvds  12722  infpnlem2  12727  lgslem4  15524  lgsval  15525  lgsfvalg  15526  lgsfcl2  15527  lgsval2lem  15531  lgsmod  15547  lgsdir2  15554  lgsne0  15559  gausslemma2dlem1a  15579  lgsquadlemofi  15597  lgsquadlem2  15599  m1lgs  15606
  Copyright terms: Public domain W3C validator