ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsdc GIF version

Theorem dvdsdc 11944
Description: Divisibility is decidable. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
dvdsdc ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)

Proof of Theorem dvdsdc
StepHypRef Expression
1 simpr 110 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
2 simpl 109 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℕ)
31, 2zmodcld 10419 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑀) ∈ ℕ0)
43nn0zd 9440 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod 𝑀) ∈ ℤ)
5 0z 9331 . . 3 0 ∈ ℤ
6 zdceq 9395 . . 3 (((𝑁 mod 𝑀) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (𝑁 mod 𝑀) = 0)
74, 5, 6sylancl 413 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID (𝑁 mod 𝑀) = 0)
8 dvdsval3 11937 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 mod 𝑀) = 0))
98dcbid 839 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (DECID 𝑀𝑁DECID (𝑁 mod 𝑀) = 0))
107, 9mpbird 167 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2164   class class class wbr 4030  (class class class)co 5919  0cc0 7874  cn 8984  cz 9320   mod cmo 10396  cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-q 9688  df-rp 9723  df-fl 10342  df-mod 10397  df-dvds 11934
This theorem is referenced by:  zdvdsdc  11958  gcdsupex  12097  gcdsupcl  12098  prmind2  12261  prmdc  12271  divgcdodd  12284  euclemma  12287  pw2dvdslemn  12306  hashdvds  12362  fermltl  12375  hashgcdeq  12380  phisum  12381  odzcllem  12383  odzdvds  12386  fldivp1  12489  prmpwdvds  12496  infpnlem2  12501  lgslem4  15160  lgsval  15161  lgsfvalg  15162  lgsfcl2  15163  lgsval2lem  15167  lgsmod  15183  lgsdir2  15190  lgsne0  15195  gausslemma2dlem1a  15215  lgsquadlemofi  15233  lgsquadlem2  15235  m1lgs  15242
  Copyright terms: Public domain W3C validator