ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ply1term GIF version

Theorem ply1term 15063
Description: A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypothesis
Ref Expression
ply1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
ply1term ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑁   𝑧,𝑆
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem ply1term
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ssel2 3179 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → 𝐴 ∈ ℂ)
2 ply1term.1 . . . . 5 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
32ply1termlem 15062 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
41, 3stoic3 1442 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
5 simp1 999 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝑆 ⊆ ℂ)
6 0cnd 8036 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 0 ∈ ℂ)
76snssd 3768 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → {0} ⊆ ℂ)
85, 7unssd 3340 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → (𝑆 ∪ {0}) ⊆ ℂ)
9 simp3 1001 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
10 simpl2 1003 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
11 elun1 3331 . . . . . 6 (𝐴𝑆𝐴 ∈ (𝑆 ∪ {0}))
1210, 11syl 14 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
13 ssun2 3328 . . . . . . 7 {0} ⊆ (𝑆 ∪ {0})
14 c0ex 8037 . . . . . . . 8 0 ∈ V
1514snss 3758 . . . . . . 7 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
1613, 15mpbir 146 . . . . . 6 0 ∈ (𝑆 ∪ {0})
1716a1i 9 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 0 ∈ (𝑆 ∪ {0}))
18 elfzelz 10117 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
19 simpl3 1004 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
2019nn0zd 9463 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
21 zdceq 9418 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑘 = 𝑁)
2218, 20, 21syl2an2 594 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → DECID 𝑘 = 𝑁)
2312, 17, 22ifcldcd 3598 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) ∈ (𝑆 ∪ {0}))
248, 9, 23elplyd 15061 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
254, 24eqeltrd 2273 . 2 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘(𝑆 ∪ {0})))
26 plyun0 15056 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
2725, 26eleqtrdi 2289 1 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  cun 3155  wss 3157  ifcif 3562  {csn 3623  cmpt 4095  cfv 5259  (class class class)co 5925  cc 7894  0cc0 7896   · cmul 7901  0cn0 9266  cz 9343  ...cfz 10100  cexp 10647  Σcsu 11535  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ply 15050
This theorem is referenced by:  plypow  15064  plyconst  15065
  Copyright terms: Public domain W3C validator