![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ply1term | GIF version |
Description: A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
ply1term.1 | ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) |
Ref | Expression |
---|---|
ply1term | ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 3174 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ ℂ) | |
2 | ply1term.1 | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) | |
3 | 2 | ply1termlem 14888 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) |
4 | 1, 3 | stoic3 1442 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) |
5 | simp1 999 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝑆 ⊆ ℂ) | |
6 | 0cnd 8012 | . . . . . 6 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℂ) | |
7 | 6 | snssd 3763 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → {0} ⊆ ℂ) |
8 | 5, 7 | unssd 3335 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑆 ∪ {0}) ⊆ ℂ) |
9 | simp3 1001 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
10 | simpl2 1003 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆) | |
11 | elun1 3326 | . . . . . 6 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ (𝑆 ∪ {0})) | |
12 | 10, 11 | syl 14 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0})) |
13 | ssun2 3323 | . . . . . . 7 ⊢ {0} ⊆ (𝑆 ∪ {0}) | |
14 | c0ex 8013 | . . . . . . . 8 ⊢ 0 ∈ V | |
15 | 14 | snss 3753 | . . . . . . 7 ⊢ (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0})) |
16 | 13, 15 | mpbir 146 | . . . . . 6 ⊢ 0 ∈ (𝑆 ∪ {0}) |
17 | 16 | a1i 9 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 0 ∈ (𝑆 ∪ {0})) |
18 | elfzelz 10091 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) | |
19 | simpl3 1004 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0) | |
20 | 19 | nn0zd 9437 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℤ) |
21 | zdceq 9392 | . . . . . 6 ⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑘 = 𝑁) | |
22 | 18, 20, 21 | syl2an2 594 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → DECID 𝑘 = 𝑁) |
23 | 12, 17, 22 | ifcldcd 3593 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) ∈ (𝑆 ∪ {0})) |
24 | 8, 9, 23 | elplyd 14887 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
25 | 4, 24 | eqeltrd 2270 | . 2 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘(𝑆 ∪ {0}))) |
26 | plyun0 14882 | . 2 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | |
27 | 25, 26 | eleqtrdi 2286 | 1 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∪ cun 3151 ⊆ wss 3153 ifcif 3557 {csn 3618 ↦ cmpt 4090 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 0cc0 7872 · cmul 7877 ℕ0cn0 9240 ℤcz 9317 ...cfz 10074 ↑cexp 10609 Σcsu 11496 Polycply 14874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-map 6704 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 df-ply 14876 |
This theorem is referenced by: plypow 14890 plyconst 14891 |
Copyright terms: Public domain | W3C validator |