ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ply1term GIF version

Theorem ply1term 14979
Description: A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypothesis
Ref Expression
ply1term.1 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
Assertion
Ref Expression
ply1term ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑁   𝑧,𝑆
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem ply1term
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ssel2 3178 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → 𝐴 ∈ ℂ)
2 ply1term.1 . . . . 5 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))
32ply1termlem 14978 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
41, 3stoic3 1442 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
5 simp1 999 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝑆 ⊆ ℂ)
6 0cnd 8019 . . . . . 6 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 0 ∈ ℂ)
76snssd 3767 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → {0} ⊆ ℂ)
85, 7unssd 3339 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → (𝑆 ∪ {0}) ⊆ ℂ)
9 simp3 1001 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
10 simpl2 1003 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
11 elun1 3330 . . . . . 6 (𝐴𝑆𝐴 ∈ (𝑆 ∪ {0}))
1210, 11syl 14 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
13 ssun2 3327 . . . . . . 7 {0} ⊆ (𝑆 ∪ {0})
14 c0ex 8020 . . . . . . . 8 0 ∈ V
1514snss 3757 . . . . . . 7 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
1613, 15mpbir 146 . . . . . 6 0 ∈ (𝑆 ∪ {0})
1716a1i 9 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 0 ∈ (𝑆 ∪ {0}))
18 elfzelz 10100 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
19 simpl3 1004 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
2019nn0zd 9446 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
21 zdceq 9401 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑘 = 𝑁)
2218, 20, 21syl2an2 594 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → DECID 𝑘 = 𝑁)
2312, 17, 22ifcldcd 3597 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) ∈ (𝑆 ∪ {0}))
248, 9, 23elplyd 14977 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
254, 24eqeltrd 2273 . 2 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘(𝑆 ∪ {0})))
26 plyun0 14972 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
2725, 26eleqtrdi 2289 1 ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  cun 3155  wss 3157  ifcif 3561  {csn 3622  cmpt 4094  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879   · cmul 7884  0cn0 9249  cz 9326  ...cfz 10083  cexp 10630  Σcsu 11518  Polycply 14964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ply 14966
This theorem is referenced by:  plypow  14980  plyconst  14981
  Copyright terms: Public domain W3C validator