| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ply1term | GIF version | ||
| Description: A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| ply1term.1 | ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) |
| Ref | Expression |
|---|---|
| ply1term | ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 3199 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ ℂ) | |
| 2 | ply1term.1 | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧↑𝑁))) | |
| 3 | 2 | ply1termlem 15381 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) |
| 4 | 1, 3 | stoic3 1453 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘)))) |
| 5 | simp1 1002 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝑆 ⊆ ℂ) | |
| 6 | 0cnd 8107 | . . . . . 6 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℂ) | |
| 7 | 6 | snssd 3792 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → {0} ⊆ ℂ) |
| 8 | 5, 7 | unssd 3360 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑆 ∪ {0}) ⊆ ℂ) |
| 9 | simp3 1004 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 10 | simpl2 1006 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆) | |
| 11 | elun1 3351 | . . . . . 6 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ (𝑆 ∪ {0})) | |
| 12 | 10, 11 | syl 14 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0})) |
| 13 | ssun2 3348 | . . . . . . 7 ⊢ {0} ⊆ (𝑆 ∪ {0}) | |
| 14 | c0ex 8108 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 15 | 14 | snss 3782 | . . . . . . 7 ⊢ (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0})) |
| 16 | 13, 15 | mpbir 146 | . . . . . 6 ⊢ 0 ∈ (𝑆 ∪ {0}) |
| 17 | 16 | a1i 9 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 0 ∈ (𝑆 ∪ {0})) |
| 18 | elfzelz 10189 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) | |
| 19 | simpl3 1007 | . . . . . . 7 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0) | |
| 20 | 19 | nn0zd 9535 | . . . . . 6 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℤ) |
| 21 | zdceq 9490 | . . . . . 6 ⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑘 = 𝑁) | |
| 22 | 18, 20, 21 | syl2an2 596 | . . . . 5 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → DECID 𝑘 = 𝑁) |
| 23 | 12, 17, 22 | ifcldcd 3620 | . . . 4 ⊢ (((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘 = 𝑁, 𝐴, 0) ∈ (𝑆 ∪ {0})) |
| 24 | 8, 9, 23 | elplyd 15380 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 25 | 4, 24 | eqeltrd 2286 | . 2 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘(𝑆 ∪ {0}))) |
| 26 | plyun0 15375 | . 2 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | |
| 27 | 25, 26 | eleqtrdi 2302 | 1 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐴 ∈ 𝑆 ∧ 𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 838 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ∪ cun 3175 ⊆ wss 3177 ifcif 3582 {csn 3646 ↦ cmpt 4124 ‘cfv 5294 (class class class)co 5974 ℂcc 7965 0cc0 7967 · cmul 7972 ℕ0cn0 9337 ℤcz 9414 ...cfz 10172 ↑cexp 10727 Σcsu 11830 Polycply 15367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-oadd 6536 df-er 6650 df-map 6767 df-en 6858 df-dom 6859 df-fin 6860 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-exp 10728 df-ihash 10965 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-sumdc 11831 df-ply 15369 |
| This theorem is referenced by: plypow 15383 plyconst 15384 |
| Copyright terms: Public domain | W3C validator |