| Step | Hyp | Ref
| Expression |
| 1 | | nffvmpt1 5569 |
. . . . . . 7
⊢
Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) |
| 2 | | nfcv 2339 |
. . . . . . 7
⊢
Ⅎ𝑘
· |
| 3 | | nfcv 2339 |
. . . . . . 7
⊢
Ⅎ𝑘(𝑧↑𝑗) |
| 4 | 1, 2, 3 | nfov 5952 |
. . . . . 6
⊢
Ⅎ𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧↑𝑗)) |
| 5 | | nfcv 2339 |
. . . . . 6
⊢
Ⅎ𝑗(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) |
| 6 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘)) |
| 7 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝑧↑𝑗) = (𝑧↑𝑘)) |
| 8 | 6, 7 | oveq12d 5940 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧↑𝑗)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧↑𝑘))) |
| 9 | 4, 5, 8 | cbvsumi 11527 |
. . . . 5
⊢
Σ𝑗 ∈
(0...𝑁)(((𝑘 ∈ ℕ0
↦ if(𝑘 ∈
(0...𝑁), 𝐴, 0))‘𝑗) · (𝑧↑𝑗)) = Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) |
| 10 | | elfznn0 10189 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 11 | | iftrue 3566 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝑁) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) = 𝐴) |
| 12 | 11 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) = 𝐴) |
| 13 | | elplyd.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ 𝑆) |
| 14 | 12, 13 | eqeltrd 2273 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ 𝑆) |
| 15 | | eqid 2196 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
↦ if(𝑘 ∈
(0...𝑁), 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)) |
| 16 | 15 | fvmpt2 5645 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ if(𝑘 ∈
(0...𝑁), 𝐴, 0) ∈ 𝑆) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = if(𝑘 ∈ (0...𝑁), 𝐴, 0)) |
| 17 | 10, 14, 16 | syl2an2 594 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = if(𝑘 ∈ (0...𝑁), 𝐴, 0)) |
| 18 | 17, 12 | eqtrd 2229 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = 𝐴) |
| 19 | 18 | oveq1d 5937 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) = (𝐴 · (𝑧↑𝑘))) |
| 20 | 19 | sumeq2dv 11533 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) |
| 21 | 9, 20 | eqtrid 2241 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧↑𝑗)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) |
| 22 | 21 | mpteq2dv 4124 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧↑𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) |
| 23 | | elplyd.1 |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 24 | | 0cnd 8019 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℂ) |
| 25 | 24 | snssd 3767 |
. . . . 5
⊢ (𝜑 → {0} ⊆
ℂ) |
| 26 | 23, 25 | unssd 3339 |
. . . 4
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
| 27 | | elplyd.2 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 28 | | elun1 3330 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ (𝑆 ∪ {0})) |
| 29 | 13, 28 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0})) |
| 30 | 29 | adantlr 477 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0})) |
| 31 | | ssun2 3327 |
. . . . . . . 8
⊢ {0}
⊆ (𝑆 ∪
{0}) |
| 32 | | c0ex 8020 |
. . . . . . . . 9
⊢ 0 ∈
V |
| 33 | 32 | snss 3757 |
. . . . . . . 8
⊢ (0 ∈
(𝑆 ∪ {0}) ↔ {0}
⊆ (𝑆 ∪
{0})) |
| 34 | 31, 33 | mpbir 146 |
. . . . . . 7
⊢ 0 ∈
(𝑆 ∪
{0}) |
| 35 | 34 | a1i 9 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ∈ (0...𝑁)) → 0 ∈ (𝑆 ∪ {0})) |
| 36 | | nn0z 9346 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
| 37 | 36 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℤ) |
| 38 | | 0zd 9338 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 0 ∈
ℤ) |
| 39 | 27 | nn0zd 9446 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 40 | 39 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈
ℤ) |
| 41 | | fzdcel 10115 |
. . . . . . 7
⊢ ((𝑘 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑁 ∈
ℤ) → DECID 𝑘 ∈ (0...𝑁)) |
| 42 | 37, 38, 40, 41 | syl3anc 1249 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
DECID 𝑘
∈ (0...𝑁)) |
| 43 | 30, 35, 42 | ifcldadc 3590 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ (𝑆 ∪ {0})) |
| 44 | 43 | fmpttd 5717 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)):ℕ0⟶(𝑆 ∪ {0})) |
| 45 | | elplyr 14976 |
. . . 4
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)):ℕ0⟶(𝑆 ∪ {0})) → (𝑧 ∈ ℂ ↦
Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧↑𝑗))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 46 | 26, 27, 44, 45 | syl3anc 1249 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧↑𝑗))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 47 | 22, 46 | eqeltrrd 2274 |
. 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 48 | | plyun0 14972 |
. 2
⊢
(Poly‘(𝑆 ∪
{0})) = (Poly‘𝑆) |
| 49 | 47, 48 | eleqtrdi 2289 |
1
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘))) ∈ (Poly‘𝑆)) |