ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elplyd GIF version

Theorem elplyd 14977
Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
elplyd.1 (𝜑𝑆 ⊆ ℂ)
elplyd.2 (𝜑𝑁 ∈ ℕ0)
elplyd.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
Assertion
Ref Expression
elplyd (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem elplyd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nffvmpt1 5569 . . . . . . 7 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗)
2 nfcv 2339 . . . . . . 7 𝑘 ·
3 nfcv 2339 . . . . . . 7 𝑘(𝑧𝑗)
41, 2, 3nfov 5952 . . . . . 6 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))
5 nfcv 2339 . . . . . 6 𝑗(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘))
6 fveq2 5558 . . . . . . 7 (𝑗 = 𝑘 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘))
7 oveq2 5930 . . . . . . 7 (𝑗 = 𝑘 → (𝑧𝑗) = (𝑧𝑘))
86, 7oveq12d 5940 . . . . . 6 (𝑗 = 𝑘 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)))
94, 5, 8cbvsumi 11527 . . . . 5 Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘))
10 elfznn0 10189 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
11 iftrue 3566 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑁) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) = 𝐴)
1211adantl 277 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) = 𝐴)
13 elplyd.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
1412, 13eqeltrd 2273 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ 𝑆)
15 eqid 2196 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1615fvmpt2 5645 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ 𝑆) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1710, 14, 16syl2an2 594 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1817, 12eqtrd 2229 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = 𝐴)
1918oveq1d 5937 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (𝐴 · (𝑧𝑘)))
2019sumeq2dv 11533 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
219, 20eqtrid 2241 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
2221mpteq2dv 4124 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
23 elplyd.1 . . . . 5 (𝜑𝑆 ⊆ ℂ)
24 0cnd 8019 . . . . . 6 (𝜑 → 0 ∈ ℂ)
2524snssd 3767 . . . . 5 (𝜑 → {0} ⊆ ℂ)
2623, 25unssd 3339 . . . 4 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
27 elplyd.2 . . . 4 (𝜑𝑁 ∈ ℕ0)
28 elun1 3330 . . . . . . . 8 (𝐴𝑆𝐴 ∈ (𝑆 ∪ {0}))
2913, 28syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
3029adantlr 477 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
31 ssun2 3327 . . . . . . . 8 {0} ⊆ (𝑆 ∪ {0})
32 c0ex 8020 . . . . . . . . 9 0 ∈ V
3332snss 3757 . . . . . . . 8 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
3431, 33mpbir 146 . . . . . . 7 0 ∈ (𝑆 ∪ {0})
3534a1i 9 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (0...𝑁)) → 0 ∈ (𝑆 ∪ {0}))
36 nn0z 9346 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
3736adantl 277 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
38 0zd 9338 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 0 ∈ ℤ)
3927nn0zd 9446 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
4039adantr 276 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℤ)
41 fzdcel 10115 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑘 ∈ (0...𝑁))
4237, 38, 40, 41syl3anc 1249 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → DECID 𝑘 ∈ (0...𝑁))
4330, 35, 42ifcldadc 3590 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ (𝑆 ∪ {0}))
4443fmpttd 5717 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)):ℕ0⟶(𝑆 ∪ {0}))
45 elplyr 14976 . . . 4 (((𝑆 ∪ {0}) ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)):ℕ0⟶(𝑆 ∪ {0})) → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) ∈ (Poly‘(𝑆 ∪ {0})))
4626, 27, 44, 45syl3anc 1249 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) ∈ (Poly‘(𝑆 ∪ {0})))
4722, 46eqeltrrd 2274 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
48 plyun0 14972 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
4947, 48eleqtrdi 2289 1 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  cun 3155  wss 3157  ifcif 3561  {csn 3622  cmpt 4094  wf 5254  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879   · cmul 7884  0cn0 9249  cz 9326  ...cfz 10083  cexp 10630  Σcsu 11518  Polycply 14964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540  df-sumdc 11519  df-ply 14966
This theorem is referenced by:  ply1term  14979  plyaddlem  14985  plymullem  14986  plycj  14997  dvply2g  15002
  Copyright terms: Public domain W3C validator