ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elplyd GIF version

Theorem elplyd 15380
Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
elplyd.1 (𝜑𝑆 ⊆ ℂ)
elplyd.2 (𝜑𝑁 ∈ ℕ0)
elplyd.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
Assertion
Ref Expression
elplyd (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem elplyd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nffvmpt1 5614 . . . . . . 7 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗)
2 nfcv 2352 . . . . . . 7 𝑘 ·
3 nfcv 2352 . . . . . . 7 𝑘(𝑧𝑗)
41, 2, 3nfov 6004 . . . . . 6 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))
5 nfcv 2352 . . . . . 6 𝑗(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘))
6 fveq2 5603 . . . . . . 7 (𝑗 = 𝑘 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘))
7 oveq2 5982 . . . . . . 7 (𝑗 = 𝑘 → (𝑧𝑗) = (𝑧𝑘))
86, 7oveq12d 5992 . . . . . 6 (𝑗 = 𝑘 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)))
94, 5, 8cbvsumi 11839 . . . . 5 Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘))
10 elfznn0 10278 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
11 iftrue 3587 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑁) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) = 𝐴)
1211adantl 277 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) = 𝐴)
13 elplyd.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
1412, 13eqeltrd 2286 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ 𝑆)
15 eqid 2209 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1615fvmpt2 5691 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ 𝑆) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1710, 14, 16syl2an2 596 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1817, 12eqtrd 2242 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = 𝐴)
1918oveq1d 5989 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (𝐴 · (𝑧𝑘)))
2019sumeq2dv 11845 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
219, 20eqtrid 2254 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
2221mpteq2dv 4154 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
23 elplyd.1 . . . . 5 (𝜑𝑆 ⊆ ℂ)
24 0cnd 8107 . . . . . 6 (𝜑 → 0 ∈ ℂ)
2524snssd 3792 . . . . 5 (𝜑 → {0} ⊆ ℂ)
2623, 25unssd 3360 . . . 4 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
27 elplyd.2 . . . 4 (𝜑𝑁 ∈ ℕ0)
28 elun1 3351 . . . . . . . 8 (𝐴𝑆𝐴 ∈ (𝑆 ∪ {0}))
2913, 28syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
3029adantlr 477 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
31 ssun2 3348 . . . . . . . 8 {0} ⊆ (𝑆 ∪ {0})
32 c0ex 8108 . . . . . . . . 9 0 ∈ V
3332snss 3782 . . . . . . . 8 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
3431, 33mpbir 146 . . . . . . 7 0 ∈ (𝑆 ∪ {0})
3534a1i 9 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (0...𝑁)) → 0 ∈ (𝑆 ∪ {0}))
36 nn0z 9434 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
3736adantl 277 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
38 0zd 9426 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 0 ∈ ℤ)
3927nn0zd 9535 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
4039adantr 276 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℤ)
41 fzdcel 10204 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑘 ∈ (0...𝑁))
4237, 38, 40, 41syl3anc 1252 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → DECID 𝑘 ∈ (0...𝑁))
4330, 35, 42ifcldadc 3612 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ (𝑆 ∪ {0}))
4443fmpttd 5763 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)):ℕ0⟶(𝑆 ∪ {0}))
45 elplyr 15379 . . . 4 (((𝑆 ∪ {0}) ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)):ℕ0⟶(𝑆 ∪ {0})) → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) ∈ (Poly‘(𝑆 ∪ {0})))
4626, 27, 44, 45syl3anc 1252 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) ∈ (Poly‘(𝑆 ∪ {0})))
4722, 46eqeltrrd 2287 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
48 plyun0 15375 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
4947, 48eleqtrdi 2302 1 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 838   = wceq 1375  wcel 2180  cun 3175  wss 3177  ifcif 3582  {csn 3646  cmpt 4124  wf 5290  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967   · cmul 7972  0cn0 9337  cz 9414  ...cfz 10172  cexp 10727  Σcsu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-seqfrec 10637  df-sumdc 11831  df-ply 15369
This theorem is referenced by:  ply1term  15382  plyaddlem  15388  plymullem  15389  plycj  15400  dvply2g  15405
  Copyright terms: Public domain W3C validator