ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elplyd GIF version

Theorem elplyd 14887
Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
elplyd.1 (𝜑𝑆 ⊆ ℂ)
elplyd.2 (𝜑𝑁 ∈ ℕ0)
elplyd.3 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
Assertion
Ref Expression
elplyd (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑘,𝑁   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem elplyd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 nffvmpt1 5565 . . . . . . 7 𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗)
2 nfcv 2336 . . . . . . 7 𝑘 ·
3 nfcv 2336 . . . . . . 7 𝑘(𝑧𝑗)
41, 2, 3nfov 5948 . . . . . 6 𝑘(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))
5 nfcv 2336 . . . . . 6 𝑗(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘))
6 fveq2 5554 . . . . . . 7 (𝑗 = 𝑘 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘))
7 oveq2 5926 . . . . . . 7 (𝑗 = 𝑘 → (𝑧𝑗) = (𝑧𝑘))
86, 7oveq12d 5936 . . . . . 6 (𝑗 = 𝑘 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)))
94, 5, 8cbvsumi 11505 . . . . 5 Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘))
10 elfznn0 10180 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
11 iftrue 3562 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑁) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) = 𝐴)
1211adantl 277 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) = 𝐴)
13 elplyd.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)
1412, 13eqeltrd 2270 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ 𝑆)
15 eqid 2193 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1615fvmpt2 5641 . . . . . . . . 9 ((𝑘 ∈ ℕ0 ∧ if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ 𝑆) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1710, 14, 16syl2an2 594 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = if(𝑘 ∈ (0...𝑁), 𝐴, 0))
1817, 12eqtrd 2226 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) = 𝐴)
1918oveq1d 5933 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)) = (𝐴 · (𝑧𝑘)))
2019sumeq2dv 11511 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
219, 20eqtrid 2238 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗)) = Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘)))
2221mpteq2dv 4120 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))))
23 elplyd.1 . . . . 5 (𝜑𝑆 ⊆ ℂ)
24 0cnd 8012 . . . . . 6 (𝜑 → 0 ∈ ℂ)
2524snssd 3763 . . . . 5 (𝜑 → {0} ⊆ ℂ)
2623, 25unssd 3335 . . . 4 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
27 elplyd.2 . . . 4 (𝜑𝑁 ∈ ℕ0)
28 elun1 3326 . . . . . . . 8 (𝐴𝑆𝐴 ∈ (𝑆 ∪ {0}))
2913, 28syl 14 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
3029adantlr 477 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ (𝑆 ∪ {0}))
31 ssun2 3323 . . . . . . . 8 {0} ⊆ (𝑆 ∪ {0})
32 c0ex 8013 . . . . . . . . 9 0 ∈ V
3332snss 3753 . . . . . . . 8 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
3431, 33mpbir 146 . . . . . . 7 0 ∈ (𝑆 ∪ {0})
3534a1i 9 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ∈ (0...𝑁)) → 0 ∈ (𝑆 ∪ {0}))
36 nn0z 9337 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
3736adantl 277 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
38 0zd 9329 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 0 ∈ ℤ)
3927nn0zd 9437 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
4039adantr 276 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℤ)
41 fzdcel 10106 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑘 ∈ (0...𝑁))
4237, 38, 40, 41syl3anc 1249 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → DECID 𝑘 ∈ (0...𝑁))
4330, 35, 42ifcldadc 3586 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ∈ (0...𝑁), 𝐴, 0) ∈ (𝑆 ∪ {0}))
4443fmpttd 5713 . . . 4 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)):ℕ0⟶(𝑆 ∪ {0}))
45 elplyr 14886 . . . 4 (((𝑆 ∪ {0}) ⊆ ℂ ∧ 𝑁 ∈ ℕ0 ∧ (𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0)):ℕ0⟶(𝑆 ∪ {0})) → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) ∈ (Poly‘(𝑆 ∪ {0})))
4626, 27, 44, 45syl3anc 1249 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑁)(((𝑘 ∈ ℕ0 ↦ if(𝑘 ∈ (0...𝑁), 𝐴, 0))‘𝑗) · (𝑧𝑗))) ∈ (Poly‘(𝑆 ∪ {0})))
4722, 46eqeltrrd 2271 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
48 plyun0 14882 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
4947, 48eleqtrdi 2286 1 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2164  cun 3151  wss 3153  ifcif 3557  {csn 3618  cmpt 4090  wf 5250  cfv 5254  (class class class)co 5918  cc 7870  0cc0 7872   · cmul 7877  0cn0 9240  cz 9317  ...cfz 10074  cexp 10609  Σcsu 11496  Polycply 14874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-sumdc 11497  df-ply 14876
This theorem is referenced by:  ply1term  14889  plyaddlem  14895  plymullem  14896
  Copyright terms: Public domain W3C validator