| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgredgprv | GIF version | ||
| Description: In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either 𝑀 or 𝑁 could be proper classes ((𝐸‘𝑋) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
| Ref | Expression |
|---|---|
| umgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| umgredgprv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| umgredgprv | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . 4 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → (𝐸‘𝑋) = {𝑀, 𝑁}) | |
| 2 | umgruhgr 15870 | . . . . . 6 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
| 3 | umgredgprv.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | umgrnloopv.e | . . . . . . 7 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 5 | 3, 4 | uhgrss 15832 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ⊆ 𝑉) |
| 6 | 2, 5 | sylan 283 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ⊆ 𝑉) |
| 7 | 6 | adantr 276 | . . . 4 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → (𝐸‘𝑋) ⊆ 𝑉) |
| 8 | 1, 7 | eqsstrrd 3239 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → {𝑀, 𝑁} ⊆ 𝑉) |
| 9 | 3, 4 | umgredg2en 15866 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ≈ 2o) |
| 10 | 9 | adantr 276 | . . . . . 6 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → (𝐸‘𝑋) ≈ 2o) |
| 11 | 1, 10 | eqbrtrrd 4084 | . . . . 5 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → {𝑀, 𝑁} ≈ 2o) |
| 12 | pr2cv 7333 | . . . . 5 ⊢ ({𝑀, 𝑁} ≈ 2o → (𝑀 ∈ V ∧ 𝑁 ∈ V)) | |
| 13 | 11, 12 | syl 14 | . . . 4 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → (𝑀 ∈ V ∧ 𝑁 ∈ V)) |
| 14 | prid1g 3748 | . . . . 5 ⊢ (𝑀 ∈ V → 𝑀 ∈ {𝑀, 𝑁}) | |
| 15 | prid2g 3749 | . . . . 5 ⊢ (𝑁 ∈ V → 𝑁 ∈ {𝑀, 𝑁}) | |
| 16 | 14, 15 | anim12i 338 | . . . 4 ⊢ ((𝑀 ∈ V ∧ 𝑁 ∈ V) → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁})) |
| 17 | prssg 3802 | . . . 4 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉)) | |
| 18 | 13, 16, 17 | 3syl 17 | . . 3 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉)) |
| 19 | 8, 18 | mpbird 167 | . 2 ⊢ (((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝐸‘𝑋) = {𝑀, 𝑁}) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
| 20 | 19 | ex 115 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 Vcvv 2777 ⊆ wss 3175 {cpr 3645 class class class wbr 4060 dom cdm 4694 ‘cfv 5291 2oc2o 6521 ≈ cen 6850 Vtxcvtx 15772 iEdgciedg 15773 UHGraphcuhgr 15824 UMGraphcumgr 15849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4179 ax-nul 4187 ax-pow 4235 ax-pr 4270 ax-un 4499 ax-setind 4604 ax-cnex 8053 ax-resscn 8054 ax-1cn 8055 ax-1re 8056 ax-icn 8057 ax-addcl 8058 ax-addrcl 8059 ax-mulcl 8060 ax-addcom 8062 ax-mulcom 8063 ax-addass 8064 ax-mulass 8065 ax-distr 8066 ax-i2m1 8067 ax-1rid 8069 ax-0id 8070 ax-rnegex 8071 ax-cnre 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2779 df-sbc 3007 df-csb 3103 df-dif 3177 df-un 3179 df-in 3181 df-ss 3188 df-nul 3470 df-if 3581 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-int 3901 df-br 4061 df-opab 4123 df-mpt 4124 df-tr 4160 df-id 4359 df-iord 4432 df-on 4434 df-suc 4437 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-res 4706 df-ima 4707 df-iota 5252 df-fun 5293 df-fn 5294 df-f 5295 df-f1 5296 df-fo 5297 df-f1o 5298 df-fv 5299 df-riota 5924 df-ov 5972 df-oprab 5973 df-mpo 5974 df-1st 6251 df-2nd 6252 df-1o 6527 df-2o 6528 df-er 6645 df-en 6853 df-sub 8282 df-inn 9074 df-2 9132 df-3 9133 df-4 9134 df-5 9135 df-6 9136 df-7 9137 df-8 9138 df-9 9139 df-n0 9333 df-dec 9542 df-ndx 12996 df-slot 12997 df-base 12999 df-edgf 15765 df-vtx 15774 df-iedg 15775 df-uhgrm 15826 df-upgren 15850 df-umgren 15851 |
| This theorem is referenced by: umgrnloop 15873 usgredgprv 15951 |
| Copyright terms: Public domain | W3C validator |