| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgrpredgv | GIF version | ||
| Description: An edge of a multigraph always connects two vertices. This theorem does not hold for arbitrary pseudographs: if either 𝑀 or 𝑁 is a proper class, then {𝑀, 𝑁} ∈ 𝐸 could still hold ({𝑀, 𝑁} would be either {𝑀} or {𝑁}, see prprc1 3746 or prprc2 3747, i.e. a loop), but 𝑀 ∈ 𝑉 or 𝑁 ∈ 𝑉 would not be true. (Contributed by AV, 27-Nov-2020.) |
| Ref | Expression |
|---|---|
| upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| umgrpredgv | ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | 1 | eleq2i 2273 | . . . . 5 ⊢ ({𝑀, 𝑁} ∈ 𝐸 ↔ {𝑀, 𝑁} ∈ (Edg‘𝐺)) |
| 3 | edgumgren 15816 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ (Edg‘𝐺)) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ {𝑀, 𝑁} ≈ 2o)) | |
| 4 | 2, 3 | sylan2b 287 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ {𝑀, 𝑁} ≈ 2o)) |
| 5 | 4 | simpld 112 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → {𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺)) |
| 6 | upgredg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | 6 | eqcomi 2210 | . . . 4 ⊢ (Vtx‘𝐺) = 𝑉 |
| 8 | 7 | pweqi 3625 | . . 3 ⊢ 𝒫 (Vtx‘𝐺) = 𝒫 𝑉 |
| 9 | 5, 8 | eleqtrdi 2299 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → {𝑀, 𝑁} ∈ 𝒫 𝑉) |
| 10 | pr2cv 7326 | . . . . . 6 ⊢ ({𝑀, 𝑁} ≈ 2o → (𝑀 ∈ V ∧ 𝑁 ∈ V)) | |
| 11 | 4, 10 | simpl2im 386 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ V ∧ 𝑁 ∈ V)) |
| 12 | 11 | simpld 112 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → 𝑀 ∈ V) |
| 13 | prid1g 3742 | . . . 4 ⊢ (𝑀 ∈ V → 𝑀 ∈ {𝑀, 𝑁}) | |
| 14 | 12, 13 | syl 14 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → 𝑀 ∈ {𝑀, 𝑁}) |
| 15 | prid2g 3743 | . . . 4 ⊢ (𝑁 ∈ V → 𝑁 ∈ {𝑀, 𝑁}) | |
| 16 | 11, 15 | simpl2im 386 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → 𝑁 ∈ {𝑀, 𝑁}) |
| 17 | prelpw 4270 | . . 3 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ∈ 𝒫 𝑉)) | |
| 18 | 14, 16, 17 | syl2anc 411 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ∈ 𝒫 𝑉)) |
| 19 | 9, 18 | mpbird 167 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 Vcvv 2773 𝒫 cpw 3621 {cpr 3639 class class class wbr 4054 ‘cfv 5285 2oc2o 6514 ≈ cen 6843 Vtxcvtx 15696 Edgcedg 15739 UMGraphcumgr 15773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-1o 6520 df-2o 6521 df-er 6638 df-en 6846 df-sub 8275 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-9 9132 df-n0 9326 df-dec 9535 df-ndx 12920 df-slot 12921 df-base 12923 df-edgf 15689 df-vtx 15698 df-iedg 15699 df-edg 15740 df-umgren 15775 |
| This theorem is referenced by: umgrnloop2 15825 |
| Copyright terms: Public domain | W3C validator |