| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uspgredg2vlem | GIF version | ||
| Description: Lemma for uspgredg2v 16027. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.) |
| Ref | Expression |
|---|---|
| uspgredg2v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uspgredg2v.e | ⊢ 𝐸 = (Edg‘𝐺) |
| uspgredg2v.a | ⊢ 𝐴 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} |
| Ref | Expression |
|---|---|
| uspgredg2vlem | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2293 | . . 3 ⊢ (𝑒 = 𝑌 → (𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑌)) | |
| 2 | uspgredg2v.a | . . 3 ⊢ 𝐴 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} | |
| 3 | 1, 2 | elrab2 2962 | . 2 ⊢ (𝑌 ∈ 𝐴 ↔ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) |
| 4 | simpl 109 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → 𝐺 ∈ USPGraph) | |
| 5 | uspgredg2v.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
| 6 | 5 | eleq2i 2296 | . . . . . 6 ⊢ (𝑌 ∈ 𝐸 ↔ 𝑌 ∈ (Edg‘𝐺)) |
| 7 | 6 | biimpi 120 | . . . . 5 ⊢ (𝑌 ∈ 𝐸 → 𝑌 ∈ (Edg‘𝐺)) |
| 8 | 7 | ad2antrl 490 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → 𝑌 ∈ (Edg‘𝐺)) |
| 9 | simprr 531 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → 𝑁 ∈ 𝑌) | |
| 10 | 4, 8, 9 | 3jca 1201 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → (𝐺 ∈ USPGraph ∧ 𝑌 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑌)) |
| 11 | uspgredg2vtxeu 16024 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑌) → ∃!𝑧 ∈ (Vtx‘𝐺)𝑌 = {𝑁, 𝑧}) | |
| 12 | uspgredg2v.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 13 | reueq1 2730 | . . . . 5 ⊢ (𝑉 = (Vtx‘𝐺) → (∃!𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧} ↔ ∃!𝑧 ∈ (Vtx‘𝐺)𝑌 = {𝑁, 𝑧})) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (∃!𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧} ↔ ∃!𝑧 ∈ (Vtx‘𝐺)𝑌 = {𝑁, 𝑧}) |
| 15 | 11, 14 | sylibr 134 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑌) → ∃!𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) |
| 16 | riotacl 5976 | . . 3 ⊢ (∃!𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧} → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) | |
| 17 | 10, 15, 16 | 3syl 17 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) |
| 18 | 3, 17 | sylan2b 287 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∃!wreu 2510 {crab 2512 {cpr 3667 ‘cfv 5318 ℩crio 5959 Vtxcvtx 15821 Edgcedg 15866 USPGraphcuspgr 15959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-1o 6568 df-2o 6569 df-en 6896 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 df-ndx 13043 df-slot 13044 df-base 13046 df-edgf 15814 df-vtx 15823 df-iedg 15824 df-edg 15867 df-upgren 15901 df-uspgren 15961 |
| This theorem is referenced by: uspgredg2v 16027 |
| Copyright terms: Public domain | W3C validator |