| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uspgredg2vlem | GIF version | ||
| Description: Lemma for uspgredg2v 15984. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.) |
| Ref | Expression |
|---|---|
| uspgredg2v.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uspgredg2v.e | ⊢ 𝐸 = (Edg‘𝐺) |
| uspgredg2v.a | ⊢ 𝐴 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} |
| Ref | Expression |
|---|---|
| uspgredg2vlem | ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2273 | . . 3 ⊢ (𝑒 = 𝑌 → (𝑁 ∈ 𝑒 ↔ 𝑁 ∈ 𝑌)) | |
| 2 | uspgredg2v.a | . . 3 ⊢ 𝐴 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} | |
| 3 | 1, 2 | elrab2 2942 | . 2 ⊢ (𝑌 ∈ 𝐴 ↔ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) |
| 4 | simpl 109 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → 𝐺 ∈ USPGraph) | |
| 5 | uspgredg2v.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
| 6 | 5 | eleq2i 2276 | . . . . . 6 ⊢ (𝑌 ∈ 𝐸 ↔ 𝑌 ∈ (Edg‘𝐺)) |
| 7 | 6 | biimpi 120 | . . . . 5 ⊢ (𝑌 ∈ 𝐸 → 𝑌 ∈ (Edg‘𝐺)) |
| 8 | 7 | ad2antrl 490 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → 𝑌 ∈ (Edg‘𝐺)) |
| 9 | simprr 531 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → 𝑁 ∈ 𝑌) | |
| 10 | 4, 8, 9 | 3jca 1182 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → (𝐺 ∈ USPGraph ∧ 𝑌 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑌)) |
| 11 | uspgredg2vtxeu 15981 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑌) → ∃!𝑧 ∈ (Vtx‘𝐺)𝑌 = {𝑁, 𝑧}) | |
| 12 | uspgredg2v.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 13 | reueq1 2710 | . . . . 5 ⊢ (𝑉 = (Vtx‘𝐺) → (∃!𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧} ↔ ∃!𝑧 ∈ (Vtx‘𝐺)𝑌 = {𝑁, 𝑧})) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (∃!𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧} ↔ ∃!𝑧 ∈ (Vtx‘𝐺)𝑌 = {𝑁, 𝑧}) |
| 15 | 11, 14 | sylibr 134 | . . 3 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ (Edg‘𝐺) ∧ 𝑁 ∈ 𝑌) → ∃!𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) |
| 16 | riotacl 5943 | . . 3 ⊢ (∃!𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧} → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) | |
| 17 | 10, 15, 16 | 3syl 17 | . 2 ⊢ ((𝐺 ∈ USPGraph ∧ (𝑌 ∈ 𝐸 ∧ 𝑁 ∈ 𝑌)) → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) |
| 18 | 3, 17 | sylan2b 287 | 1 ⊢ ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ 𝐴) → (℩𝑧 ∈ 𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ∃!wreu 2490 {crab 2492 {cpr 3647 ‘cfv 5294 ℩crio 5926 Vtxcvtx 15778 Edgcedg 15823 USPGraphcuspgr 15916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-1o 6532 df-2o 6533 df-en 6858 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-dec 9547 df-ndx 13001 df-slot 13002 df-base 13004 df-edgf 15771 df-vtx 15780 df-iedg 15781 df-edg 15824 df-upgren 15858 df-uspgren 15918 |
| This theorem is referenced by: uspgredg2v 15984 |
| Copyright terms: Public domain | W3C validator |