ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uspgredg2vlem GIF version

Theorem uspgredg2vlem 16026
Description: Lemma for uspgredg2v 16027. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 6-Dec-2020.)
Hypotheses
Ref Expression
uspgredg2v.v 𝑉 = (Vtx‘𝐺)
uspgredg2v.e 𝐸 = (Edg‘𝐺)
uspgredg2v.a 𝐴 = {𝑒𝐸𝑁𝑒}
Assertion
Ref Expression
uspgredg2vlem ((𝐺 ∈ USPGraph ∧ 𝑌𝐴) → (𝑧𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉)
Distinct variable groups:   𝑒,𝐸   𝑧,𝐺   𝑒,𝑁   𝑧,𝑁   𝑧,𝑉   𝑒,𝑌   𝑧,𝑌
Allowed substitution hints:   𝐴(𝑧,𝑒)   𝐸(𝑧)   𝐺(𝑒)   𝑉(𝑒)

Proof of Theorem uspgredg2vlem
StepHypRef Expression
1 eleq2 2293 . . 3 (𝑒 = 𝑌 → (𝑁𝑒𝑁𝑌))
2 uspgredg2v.a . . 3 𝐴 = {𝑒𝐸𝑁𝑒}
31, 2elrab2 2962 . 2 (𝑌𝐴 ↔ (𝑌𝐸𝑁𝑌))
4 simpl 109 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝑌𝐸𝑁𝑌)) → 𝐺 ∈ USPGraph)
5 uspgredg2v.e . . . . . . 7 𝐸 = (Edg‘𝐺)
65eleq2i 2296 . . . . . 6 (𝑌𝐸𝑌 ∈ (Edg‘𝐺))
76biimpi 120 . . . . 5 (𝑌𝐸𝑌 ∈ (Edg‘𝐺))
87ad2antrl 490 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝑌𝐸𝑁𝑌)) → 𝑌 ∈ (Edg‘𝐺))
9 simprr 531 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝑌𝐸𝑁𝑌)) → 𝑁𝑌)
104, 8, 93jca 1201 . . 3 ((𝐺 ∈ USPGraph ∧ (𝑌𝐸𝑁𝑌)) → (𝐺 ∈ USPGraph ∧ 𝑌 ∈ (Edg‘𝐺) ∧ 𝑁𝑌))
11 uspgredg2vtxeu 16024 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ (Edg‘𝐺) ∧ 𝑁𝑌) → ∃!𝑧 ∈ (Vtx‘𝐺)𝑌 = {𝑁, 𝑧})
12 uspgredg2v.v . . . . 5 𝑉 = (Vtx‘𝐺)
13 reueq1 2730 . . . . 5 (𝑉 = (Vtx‘𝐺) → (∃!𝑧𝑉 𝑌 = {𝑁, 𝑧} ↔ ∃!𝑧 ∈ (Vtx‘𝐺)𝑌 = {𝑁, 𝑧}))
1412, 13ax-mp 5 . . . 4 (∃!𝑧𝑉 𝑌 = {𝑁, 𝑧} ↔ ∃!𝑧 ∈ (Vtx‘𝐺)𝑌 = {𝑁, 𝑧})
1511, 14sylibr 134 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑌 ∈ (Edg‘𝐺) ∧ 𝑁𝑌) → ∃!𝑧𝑉 𝑌 = {𝑁, 𝑧})
16 riotacl 5976 . . 3 (∃!𝑧𝑉 𝑌 = {𝑁, 𝑧} → (𝑧𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉)
1710, 15, 163syl 17 . 2 ((𝐺 ∈ USPGraph ∧ (𝑌𝐸𝑁𝑌)) → (𝑧𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉)
183, 17sylan2b 287 1 ((𝐺 ∈ USPGraph ∧ 𝑌𝐴) → (𝑧𝑉 𝑌 = {𝑁, 𝑧}) ∈ 𝑉)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  ∃!wreu 2510  {crab 2512  {cpr 3667  cfv 5318  crio 5959  Vtxcvtx 15821  Edgcedg 15866  USPGraphcuspgr 15959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-1o 6568  df-2o 6569  df-en 6896  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-edg 15867  df-upgren 15901  df-uspgren 15961
This theorem is referenced by:  uspgredg2v  16027
  Copyright terms: Public domain W3C validator