| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exp11 | Structured version Visualization version GIF version | ||
| Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
| Ref | Expression |
|---|---|
| 2exp11 | ⊢ (2↑;11) = ;;;2048 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8p3e11 12730 | . . . . 5 ⊢ (8 + 3) = ;11 | |
| 2 | 1 | eqcomi 2738 | . . . 4 ⊢ ;11 = (8 + 3) |
| 3 | 2 | oveq2i 7398 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
| 4 | 2cn 12261 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | 8nn0 12465 | . . . 4 ⊢ 8 ∈ ℕ0 | |
| 6 | 3nn0 12460 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 7 | expadd 14069 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
| 8 | 4, 5, 6, 7 | mp3an 1463 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
| 9 | 3, 8 | eqtri 2752 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
| 10 | 2exp8 17059 | . . . 4 ⊢ (2↑8) = ;;256 | |
| 11 | cu2 14165 | . . . 4 ⊢ (2↑3) = 8 | |
| 12 | 10, 11 | oveq12i 7399 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
| 13 | 2nn0 12459 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 14 | 5nn0 12462 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 15 | 13, 14 | deccl 12664 | . . . 4 ⊢ ;25 ∈ ℕ0 |
| 16 | 6nn0 12463 | . . . 4 ⊢ 6 ∈ ℕ0 | |
| 17 | eqid 2729 | . . . 4 ⊢ ;;256 = ;;256 | |
| 18 | 4nn0 12461 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 19 | 0nn0 12457 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 20 | 13, 19 | deccl 12664 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
| 21 | eqid 2729 | . . . . . 6 ⊢ ;25 = ;25 | |
| 22 | 1nn0 12458 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 23 | 8cn 12283 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
| 24 | 8t2e16 12764 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
| 25 | 23, 4, 24 | mulcomli 11183 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
| 26 | 1p1e2 12306 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 27 | 6p4e10 12721 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
| 28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 12710 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
| 29 | 5cn 12274 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
| 30 | 8t5e40 12767 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
| 31 | 23, 29, 30 | mulcomli 11183 | . . . . . 6 ⊢ (5 · 8) = ;40 |
| 32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 12714 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
| 33 | 4cn 12271 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 34 | 33 | addlidi 11362 | . . . . 5 ⊢ (0 + 4) = 4 |
| 35 | 20, 19, 18, 32, 34 | decaddi 12709 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
| 36 | 6cn 12277 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 37 | 8t6e48 12768 | . . . . 5 ⊢ (8 · 6) = ;48 | |
| 38 | 23, 36, 37 | mulcomli 11183 | . . . 4 ⊢ (6 · 8) = ;48 |
| 39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 12714 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
| 40 | 12, 39 | eqtri 2752 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
| 41 | 9, 40 | eqtri 2752 | 1 ⊢ (2↑;11) = ;;;2048 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 2c2 12241 3c3 12242 4c4 12243 5c5 12244 6c6 12245 8c8 12247 ℕ0cn0 12442 ;cdc 12649 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: 3lexlogpow5ineq2 42043 m11nprm 47602 |
| Copyright terms: Public domain | W3C validator |