| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exp11 | Structured version Visualization version GIF version | ||
| Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
| Ref | Expression |
|---|---|
| 2exp11 | ⊢ (2↑;11) = ;;;2048 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8p3e11 12690 | . . . . 5 ⊢ (8 + 3) = ;11 | |
| 2 | 1 | eqcomi 2738 | . . . 4 ⊢ ;11 = (8 + 3) |
| 3 | 2 | oveq2i 7364 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
| 4 | 2cn 12221 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | 8nn0 12425 | . . . 4 ⊢ 8 ∈ ℕ0 | |
| 6 | 3nn0 12420 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 7 | expadd 14029 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
| 8 | 4, 5, 6, 7 | mp3an 1463 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
| 9 | 3, 8 | eqtri 2752 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
| 10 | 2exp8 17018 | . . . 4 ⊢ (2↑8) = ;;256 | |
| 11 | cu2 14125 | . . . 4 ⊢ (2↑3) = 8 | |
| 12 | 10, 11 | oveq12i 7365 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
| 13 | 2nn0 12419 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 14 | 5nn0 12422 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 15 | 13, 14 | deccl 12624 | . . . 4 ⊢ ;25 ∈ ℕ0 |
| 16 | 6nn0 12423 | . . . 4 ⊢ 6 ∈ ℕ0 | |
| 17 | eqid 2729 | . . . 4 ⊢ ;;256 = ;;256 | |
| 18 | 4nn0 12421 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 19 | 0nn0 12417 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 20 | 13, 19 | deccl 12624 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
| 21 | eqid 2729 | . . . . . 6 ⊢ ;25 = ;25 | |
| 22 | 1nn0 12418 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 23 | 8cn 12243 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
| 24 | 8t2e16 12724 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
| 25 | 23, 4, 24 | mulcomli 11143 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
| 26 | 1p1e2 12266 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 27 | 6p4e10 12681 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
| 28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 12670 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
| 29 | 5cn 12234 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
| 30 | 8t5e40 12727 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
| 31 | 23, 29, 30 | mulcomli 11143 | . . . . . 6 ⊢ (5 · 8) = ;40 |
| 32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 12674 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
| 33 | 4cn 12231 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 34 | 33 | addlidi 11322 | . . . . 5 ⊢ (0 + 4) = 4 |
| 35 | 20, 19, 18, 32, 34 | decaddi 12669 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
| 36 | 6cn 12237 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 37 | 8t6e48 12728 | . . . . 5 ⊢ (8 · 6) = ;48 | |
| 38 | 23, 36, 37 | mulcomli 11143 | . . . 4 ⊢ (6 · 8) = ;48 |
| 39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 12674 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
| 40 | 12, 39 | eqtri 2752 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
| 41 | 9, 40 | eqtri 2752 | 1 ⊢ (2↑;11) = ;;;2048 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 2c2 12201 3c3 12202 4c4 12203 5c5 12204 6c6 12205 8c8 12207 ℕ0cn0 12402 ;cdc 12609 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: 3lexlogpow5ineq2 42031 m11nprm 47589 |
| Copyright terms: Public domain | W3C validator |