![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exp11 | Structured version Visualization version GIF version |
Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
Ref | Expression |
---|---|
2exp11 | ⊢ (2↑;11) = ;;;2048 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8p3e11 12794 | . . . . 5 ⊢ (8 + 3) = ;11 | |
2 | 1 | eqcomi 2736 | . . . 4 ⊢ ;11 = (8 + 3) |
3 | 2 | oveq2i 7435 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
4 | 2cn 12323 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | 8nn0 12531 | . . . 4 ⊢ 8 ∈ ℕ0 | |
6 | 3nn0 12526 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | expadd 14107 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
8 | 4, 5, 6, 7 | mp3an 1457 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
9 | 3, 8 | eqtri 2755 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
10 | 2exp8 17063 | . . . 4 ⊢ (2↑8) = ;;256 | |
11 | cu2 14201 | . . . 4 ⊢ (2↑3) = 8 | |
12 | 10, 11 | oveq12i 7436 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
13 | 2nn0 12525 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
14 | 5nn0 12528 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
15 | 13, 14 | deccl 12728 | . . . 4 ⊢ ;25 ∈ ℕ0 |
16 | 6nn0 12529 | . . . 4 ⊢ 6 ∈ ℕ0 | |
17 | eqid 2727 | . . . 4 ⊢ ;;256 = ;;256 | |
18 | 4nn0 12527 | . . . 4 ⊢ 4 ∈ ℕ0 | |
19 | 0nn0 12523 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
20 | 13, 19 | deccl 12728 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
21 | eqid 2727 | . . . . . 6 ⊢ ;25 = ;25 | |
22 | 1nn0 12524 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
23 | 8cn 12345 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
24 | 8t2e16 12828 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
25 | 23, 4, 24 | mulcomli 11259 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
26 | 1p1e2 12373 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
27 | 6p4e10 12785 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 12774 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
29 | 5cn 12336 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
30 | 8t5e40 12831 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
31 | 23, 29, 30 | mulcomli 11259 | . . . . . 6 ⊢ (5 · 8) = ;40 |
32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 12778 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
33 | 4cn 12333 | . . . . . 6 ⊢ 4 ∈ ℂ | |
34 | 33 | addlidi 11438 | . . . . 5 ⊢ (0 + 4) = 4 |
35 | 20, 19, 18, 32, 34 | decaddi 12773 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
36 | 6cn 12339 | . . . . 5 ⊢ 6 ∈ ℂ | |
37 | 8t6e48 12832 | . . . . 5 ⊢ (8 · 6) = ;48 | |
38 | 23, 36, 37 | mulcomli 11259 | . . . 4 ⊢ (6 · 8) = ;48 |
39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 12778 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
40 | 12, 39 | eqtri 2755 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
41 | 9, 40 | eqtri 2755 | 1 ⊢ (2↑;11) = ;;;2048 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 (class class class)co 7424 ℂcc 11142 0cc0 11144 1c1 11145 + caddc 11147 · cmul 11149 2c2 12303 3c3 12304 4c4 12305 5c5 12306 6c6 12307 8c8 12309 ℕ0cn0 12508 ;cdc 12713 ↑cexp 14064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-seq 14005 df-exp 14065 |
This theorem is referenced by: 3lexlogpow5ineq2 41530 m11nprm 46943 |
Copyright terms: Public domain | W3C validator |