Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exp11 | Structured version Visualization version GIF version |
Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
Ref | Expression |
---|---|
2exp11 | ⊢ (2↑;11) = ;;;2048 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8p3e11 12500 | . . . . 5 ⊢ (8 + 3) = ;11 | |
2 | 1 | eqcomi 2748 | . . . 4 ⊢ ;11 = (8 + 3) |
3 | 2 | oveq2i 7279 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
4 | 2cn 12031 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | 8nn0 12239 | . . . 4 ⊢ 8 ∈ ℕ0 | |
6 | 3nn0 12234 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | expadd 13806 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
8 | 4, 5, 6, 7 | mp3an 1459 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
9 | 3, 8 | eqtri 2767 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
10 | 2exp8 16771 | . . . 4 ⊢ (2↑8) = ;;256 | |
11 | cu2 13898 | . . . 4 ⊢ (2↑3) = 8 | |
12 | 10, 11 | oveq12i 7280 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
13 | 2nn0 12233 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
14 | 5nn0 12236 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
15 | 13, 14 | deccl 12434 | . . . 4 ⊢ ;25 ∈ ℕ0 |
16 | 6nn0 12237 | . . . 4 ⊢ 6 ∈ ℕ0 | |
17 | eqid 2739 | . . . 4 ⊢ ;;256 = ;;256 | |
18 | 4nn0 12235 | . . . 4 ⊢ 4 ∈ ℕ0 | |
19 | 0nn0 12231 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
20 | 13, 19 | deccl 12434 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
21 | eqid 2739 | . . . . . 6 ⊢ ;25 = ;25 | |
22 | 1nn0 12232 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
23 | 8cn 12053 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
24 | 8t2e16 12534 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
25 | 23, 4, 24 | mulcomli 10968 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
26 | 1p1e2 12081 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
27 | 6p4e10 12491 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 12480 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
29 | 5cn 12044 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
30 | 8t5e40 12537 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
31 | 23, 29, 30 | mulcomli 10968 | . . . . . 6 ⊢ (5 · 8) = ;40 |
32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 12484 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
33 | 4cn 12041 | . . . . . 6 ⊢ 4 ∈ ℂ | |
34 | 33 | addid2i 11146 | . . . . 5 ⊢ (0 + 4) = 4 |
35 | 20, 19, 18, 32, 34 | decaddi 12479 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
36 | 6cn 12047 | . . . . 5 ⊢ 6 ∈ ℂ | |
37 | 8t6e48 12538 | . . . . 5 ⊢ (8 · 6) = ;48 | |
38 | 23, 36, 37 | mulcomli 10968 | . . . 4 ⊢ (6 · 8) = ;48 |
39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 12484 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
40 | 12, 39 | eqtri 2767 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
41 | 9, 40 | eqtri 2767 | 1 ⊢ (2↑;11) = ;;;2048 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 (class class class)co 7268 ℂcc 10853 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 2c2 12011 3c3 12012 4c4 12013 5c5 12014 6c6 12015 8c8 12017 ℕ0cn0 12216 ;cdc 12419 ↑cexp 13763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-seq 13703 df-exp 13764 |
This theorem is referenced by: 3lexlogpow5ineq2 40043 m11nprm 45005 |
Copyright terms: Public domain | W3C validator |