Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exp11 | Structured version Visualization version GIF version |
Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
Ref | Expression |
---|---|
2exp11 | ⊢ (2↑;11) = ;;;2048 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8p3e11 12568 | . . . . 5 ⊢ (8 + 3) = ;11 | |
2 | 1 | eqcomi 2745 | . . . 4 ⊢ ;11 = (8 + 3) |
3 | 2 | oveq2i 7318 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
4 | 2cn 12098 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | 8nn0 12306 | . . . 4 ⊢ 8 ∈ ℕ0 | |
6 | 3nn0 12301 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | expadd 13875 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
8 | 4, 5, 6, 7 | mp3an 1461 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
9 | 3, 8 | eqtri 2764 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
10 | 2exp8 16839 | . . . 4 ⊢ (2↑8) = ;;256 | |
11 | cu2 13967 | . . . 4 ⊢ (2↑3) = 8 | |
12 | 10, 11 | oveq12i 7319 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
13 | 2nn0 12300 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
14 | 5nn0 12303 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
15 | 13, 14 | deccl 12502 | . . . 4 ⊢ ;25 ∈ ℕ0 |
16 | 6nn0 12304 | . . . 4 ⊢ 6 ∈ ℕ0 | |
17 | eqid 2736 | . . . 4 ⊢ ;;256 = ;;256 | |
18 | 4nn0 12302 | . . . 4 ⊢ 4 ∈ ℕ0 | |
19 | 0nn0 12298 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
20 | 13, 19 | deccl 12502 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
21 | eqid 2736 | . . . . . 6 ⊢ ;25 = ;25 | |
22 | 1nn0 12299 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
23 | 8cn 12120 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
24 | 8t2e16 12602 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
25 | 23, 4, 24 | mulcomli 11034 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
26 | 1p1e2 12148 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
27 | 6p4e10 12559 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 12548 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
29 | 5cn 12111 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
30 | 8t5e40 12605 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
31 | 23, 29, 30 | mulcomli 11034 | . . . . . 6 ⊢ (5 · 8) = ;40 |
32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 12552 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
33 | 4cn 12108 | . . . . . 6 ⊢ 4 ∈ ℂ | |
34 | 33 | addid2i 11213 | . . . . 5 ⊢ (0 + 4) = 4 |
35 | 20, 19, 18, 32, 34 | decaddi 12547 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
36 | 6cn 12114 | . . . . 5 ⊢ 6 ∈ ℂ | |
37 | 8t6e48 12606 | . . . . 5 ⊢ (8 · 6) = ;48 | |
38 | 23, 36, 37 | mulcomli 11034 | . . . 4 ⊢ (6 · 8) = ;48 |
39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 12552 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
40 | 12, 39 | eqtri 2764 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
41 | 9, 40 | eqtri 2764 | 1 ⊢ (2↑;11) = ;;;2048 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 (class class class)co 7307 ℂcc 10919 0cc0 10921 1c1 10922 + caddc 10924 · cmul 10926 2c2 12078 3c3 12079 4c4 12080 5c5 12081 6c6 12082 8c8 12084 ℕ0cn0 12283 ;cdc 12487 ↑cexp 13832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-seq 13772 df-exp 13833 |
This theorem is referenced by: 3lexlogpow5ineq2 40263 m11nprm 45297 |
Copyright terms: Public domain | W3C validator |