![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exp11 | Structured version Visualization version GIF version |
Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
Ref | Expression |
---|---|
2exp11 | ⊢ (2↑;11) = ;;;2048 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8p3e11 12812 | . . . . 5 ⊢ (8 + 3) = ;11 | |
2 | 1 | eqcomi 2744 | . . . 4 ⊢ ;11 = (8 + 3) |
3 | 2 | oveq2i 7442 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
4 | 2cn 12339 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | 8nn0 12547 | . . . 4 ⊢ 8 ∈ ℕ0 | |
6 | 3nn0 12542 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | expadd 14142 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
8 | 4, 5, 6, 7 | mp3an 1460 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
9 | 3, 8 | eqtri 2763 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
10 | 2exp8 17123 | . . . 4 ⊢ (2↑8) = ;;256 | |
11 | cu2 14236 | . . . 4 ⊢ (2↑3) = 8 | |
12 | 10, 11 | oveq12i 7443 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
13 | 2nn0 12541 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
14 | 5nn0 12544 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
15 | 13, 14 | deccl 12746 | . . . 4 ⊢ ;25 ∈ ℕ0 |
16 | 6nn0 12545 | . . . 4 ⊢ 6 ∈ ℕ0 | |
17 | eqid 2735 | . . . 4 ⊢ ;;256 = ;;256 | |
18 | 4nn0 12543 | . . . 4 ⊢ 4 ∈ ℕ0 | |
19 | 0nn0 12539 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
20 | 13, 19 | deccl 12746 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
21 | eqid 2735 | . . . . . 6 ⊢ ;25 = ;25 | |
22 | 1nn0 12540 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
23 | 8cn 12361 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
24 | 8t2e16 12846 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
25 | 23, 4, 24 | mulcomli 11268 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
26 | 1p1e2 12389 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
27 | 6p4e10 12803 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 12792 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
29 | 5cn 12352 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
30 | 8t5e40 12849 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
31 | 23, 29, 30 | mulcomli 11268 | . . . . . 6 ⊢ (5 · 8) = ;40 |
32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 12796 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
33 | 4cn 12349 | . . . . . 6 ⊢ 4 ∈ ℂ | |
34 | 33 | addlidi 11447 | . . . . 5 ⊢ (0 + 4) = 4 |
35 | 20, 19, 18, 32, 34 | decaddi 12791 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
36 | 6cn 12355 | . . . . 5 ⊢ 6 ∈ ℂ | |
37 | 8t6e48 12850 | . . . . 5 ⊢ (8 · 6) = ;48 | |
38 | 23, 36, 37 | mulcomli 11268 | . . . 4 ⊢ (6 · 8) = ;48 |
39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 12796 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
40 | 12, 39 | eqtri 2763 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
41 | 9, 40 | eqtri 2763 | 1 ⊢ (2↑;11) = ;;;2048 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 2c2 12319 3c3 12320 4c4 12321 5c5 12322 6c6 12323 8c8 12325 ℕ0cn0 12524 ;cdc 12731 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-seq 14040 df-exp 14100 |
This theorem is referenced by: 3lexlogpow5ineq2 42037 m11nprm 47526 |
Copyright terms: Public domain | W3C validator |