![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exp11 | Structured version Visualization version GIF version |
Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
Ref | Expression |
---|---|
2exp11 | ⊢ (2↑;11) = ;;;2048 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8p3e11 12839 | . . . . 5 ⊢ (8 + 3) = ;11 | |
2 | 1 | eqcomi 2749 | . . . 4 ⊢ ;11 = (8 + 3) |
3 | 2 | oveq2i 7459 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
4 | 2cn 12368 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | 8nn0 12576 | . . . 4 ⊢ 8 ∈ ℕ0 | |
6 | 3nn0 12571 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | expadd 14155 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
8 | 4, 5, 6, 7 | mp3an 1461 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
9 | 3, 8 | eqtri 2768 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
10 | 2exp8 17136 | . . . 4 ⊢ (2↑8) = ;;256 | |
11 | cu2 14249 | . . . 4 ⊢ (2↑3) = 8 | |
12 | 10, 11 | oveq12i 7460 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
13 | 2nn0 12570 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
14 | 5nn0 12573 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
15 | 13, 14 | deccl 12773 | . . . 4 ⊢ ;25 ∈ ℕ0 |
16 | 6nn0 12574 | . . . 4 ⊢ 6 ∈ ℕ0 | |
17 | eqid 2740 | . . . 4 ⊢ ;;256 = ;;256 | |
18 | 4nn0 12572 | . . . 4 ⊢ 4 ∈ ℕ0 | |
19 | 0nn0 12568 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
20 | 13, 19 | deccl 12773 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
21 | eqid 2740 | . . . . . 6 ⊢ ;25 = ;25 | |
22 | 1nn0 12569 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
23 | 8cn 12390 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
24 | 8t2e16 12873 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
25 | 23, 4, 24 | mulcomli 11299 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
26 | 1p1e2 12418 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
27 | 6p4e10 12830 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 12819 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
29 | 5cn 12381 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
30 | 8t5e40 12876 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
31 | 23, 29, 30 | mulcomli 11299 | . . . . . 6 ⊢ (5 · 8) = ;40 |
32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 12823 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
33 | 4cn 12378 | . . . . . 6 ⊢ 4 ∈ ℂ | |
34 | 33 | addlidi 11478 | . . . . 5 ⊢ (0 + 4) = 4 |
35 | 20, 19, 18, 32, 34 | decaddi 12818 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
36 | 6cn 12384 | . . . . 5 ⊢ 6 ∈ ℂ | |
37 | 8t6e48 12877 | . . . . 5 ⊢ (8 · 6) = ;48 | |
38 | 23, 36, 37 | mulcomli 11299 | . . . 4 ⊢ (6 · 8) = ;48 |
39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 12823 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
40 | 12, 39 | eqtri 2768 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
41 | 9, 40 | eqtri 2768 | 1 ⊢ (2↑;11) = ;;;2048 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 2c2 12348 3c3 12349 4c4 12350 5c5 12351 6c6 12352 8c8 12354 ℕ0cn0 12553 ;cdc 12758 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-seq 14053 df-exp 14113 |
This theorem is referenced by: 3lexlogpow5ineq2 42012 m11nprm 47475 |
Copyright terms: Public domain | W3C validator |