| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exp11 | Structured version Visualization version GIF version | ||
| Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
| Ref | Expression |
|---|---|
| 2exp11 | ⊢ (2↑;11) = ;;;2048 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8p3e11 12669 | . . . . 5 ⊢ (8 + 3) = ;11 | |
| 2 | 1 | eqcomi 2740 | . . . 4 ⊢ ;11 = (8 + 3) |
| 3 | 2 | oveq2i 7357 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
| 4 | 2cn 12200 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | 8nn0 12404 | . . . 4 ⊢ 8 ∈ ℕ0 | |
| 6 | 3nn0 12399 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 7 | expadd 14011 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
| 8 | 4, 5, 6, 7 | mp3an 1463 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
| 9 | 3, 8 | eqtri 2754 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
| 10 | 2exp8 17000 | . . . 4 ⊢ (2↑8) = ;;256 | |
| 11 | cu2 14107 | . . . 4 ⊢ (2↑3) = 8 | |
| 12 | 10, 11 | oveq12i 7358 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
| 13 | 2nn0 12398 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 14 | 5nn0 12401 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 15 | 13, 14 | deccl 12603 | . . . 4 ⊢ ;25 ∈ ℕ0 |
| 16 | 6nn0 12402 | . . . 4 ⊢ 6 ∈ ℕ0 | |
| 17 | eqid 2731 | . . . 4 ⊢ ;;256 = ;;256 | |
| 18 | 4nn0 12400 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 19 | 0nn0 12396 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 20 | 13, 19 | deccl 12603 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
| 21 | eqid 2731 | . . . . . 6 ⊢ ;25 = ;25 | |
| 22 | 1nn0 12397 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 23 | 8cn 12222 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
| 24 | 8t2e16 12703 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
| 25 | 23, 4, 24 | mulcomli 11121 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
| 26 | 1p1e2 12245 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 27 | 6p4e10 12660 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
| 28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 12649 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
| 29 | 5cn 12213 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
| 30 | 8t5e40 12706 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
| 31 | 23, 29, 30 | mulcomli 11121 | . . . . . 6 ⊢ (5 · 8) = ;40 |
| 32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 12653 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
| 33 | 4cn 12210 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 34 | 33 | addlidi 11301 | . . . . 5 ⊢ (0 + 4) = 4 |
| 35 | 20, 19, 18, 32, 34 | decaddi 12648 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
| 36 | 6cn 12216 | . . . . 5 ⊢ 6 ∈ ℂ | |
| 37 | 8t6e48 12707 | . . . . 5 ⊢ (8 · 6) = ;48 | |
| 38 | 23, 36, 37 | mulcomli 11121 | . . . 4 ⊢ (6 · 8) = ;48 |
| 39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 12653 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
| 40 | 12, 39 | eqtri 2754 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
| 41 | 9, 40 | eqtri 2754 | 1 ⊢ (2↑;11) = ;;;2048 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 2c2 12180 3c3 12181 4c4 12182 5c5 12183 6c6 12184 8c8 12186 ℕ0cn0 12381 ;cdc 12588 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: 3lexlogpow5ineq2 42094 m11nprm 47638 |
| Copyright terms: Public domain | W3C validator |