![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exp11 | Structured version Visualization version GIF version |
Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021.) |
Ref | Expression |
---|---|
2exp11 | ⊢ (2↑;11) = ;;;2048 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8p3e11 12759 | . . . . 5 ⊢ (8 + 3) = ;11 | |
2 | 1 | eqcomi 2735 | . . . 4 ⊢ ;11 = (8 + 3) |
3 | 2 | oveq2i 7415 | . . 3 ⊢ (2↑;11) = (2↑(8 + 3)) |
4 | 2cn 12288 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | 8nn0 12496 | . . . 4 ⊢ 8 ∈ ℕ0 | |
6 | 3nn0 12491 | . . . 4 ⊢ 3 ∈ ℕ0 | |
7 | expadd 14073 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (2↑(8 + 3)) = ((2↑8) · (2↑3))) | |
8 | 4, 5, 6, 7 | mp3an 1457 | . . 3 ⊢ (2↑(8 + 3)) = ((2↑8) · (2↑3)) |
9 | 3, 8 | eqtri 2754 | . 2 ⊢ (2↑;11) = ((2↑8) · (2↑3)) |
10 | 2exp8 17029 | . . . 4 ⊢ (2↑8) = ;;256 | |
11 | cu2 14167 | . . . 4 ⊢ (2↑3) = 8 | |
12 | 10, 11 | oveq12i 7416 | . . 3 ⊢ ((2↑8) · (2↑3)) = (;;256 · 8) |
13 | 2nn0 12490 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
14 | 5nn0 12493 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
15 | 13, 14 | deccl 12693 | . . . 4 ⊢ ;25 ∈ ℕ0 |
16 | 6nn0 12494 | . . . 4 ⊢ 6 ∈ ℕ0 | |
17 | eqid 2726 | . . . 4 ⊢ ;;256 = ;;256 | |
18 | 4nn0 12492 | . . . 4 ⊢ 4 ∈ ℕ0 | |
19 | 0nn0 12488 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
20 | 13, 19 | deccl 12693 | . . . . 5 ⊢ ;20 ∈ ℕ0 |
21 | eqid 2726 | . . . . . 6 ⊢ ;25 = ;25 | |
22 | 1nn0 12489 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
23 | 8cn 12310 | . . . . . . . 8 ⊢ 8 ∈ ℂ | |
24 | 8t2e16 12793 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
25 | 23, 4, 24 | mulcomli 11224 | . . . . . . 7 ⊢ (2 · 8) = ;16 |
26 | 1p1e2 12338 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
27 | 6p4e10 12750 | . . . . . . 7 ⊢ (6 + 4) = ;10 | |
28 | 22, 16, 18, 25, 26, 19, 27 | decaddci 12739 | . . . . . 6 ⊢ ((2 · 8) + 4) = ;20 |
29 | 5cn 12301 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
30 | 8t5e40 12796 | . . . . . . 7 ⊢ (8 · 5) = ;40 | |
31 | 23, 29, 30 | mulcomli 11224 | . . . . . 6 ⊢ (5 · 8) = ;40 |
32 | 5, 13, 14, 21, 19, 18, 28, 31 | decmul1c 12743 | . . . . 5 ⊢ (;25 · 8) = ;;200 |
33 | 4cn 12298 | . . . . . 6 ⊢ 4 ∈ ℂ | |
34 | 33 | addlidi 11403 | . . . . 5 ⊢ (0 + 4) = 4 |
35 | 20, 19, 18, 32, 34 | decaddi 12738 | . . . 4 ⊢ ((;25 · 8) + 4) = ;;204 |
36 | 6cn 12304 | . . . . 5 ⊢ 6 ∈ ℂ | |
37 | 8t6e48 12797 | . . . . 5 ⊢ (8 · 6) = ;48 | |
38 | 23, 36, 37 | mulcomli 11224 | . . . 4 ⊢ (6 · 8) = ;48 |
39 | 5, 15, 16, 17, 5, 18, 35, 38 | decmul1c 12743 | . . 3 ⊢ (;;256 · 8) = ;;;2048 |
40 | 12, 39 | eqtri 2754 | . 2 ⊢ ((2↑8) · (2↑3)) = ;;;2048 |
41 | 9, 40 | eqtri 2754 | 1 ⊢ (2↑;11) = ;;;2048 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 (class class class)co 7404 ℂcc 11107 0cc0 11109 1c1 11110 + caddc 11112 · cmul 11114 2c2 12268 3c3 12269 4c4 12270 5c5 12271 6c6 12272 8c8 12274 ℕ0cn0 12473 ;cdc 12678 ↑cexp 14030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-seq 13970 df-exp 14031 |
This theorem is referenced by: 3lexlogpow5ineq2 41434 m11nprm 46822 |
Copyright terms: Public domain | W3C validator |