Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5t2e10 | Structured version Visualization version GIF version |
Description: 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
5t2e10 | ⊢ (5 · 2) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 12303 | . 2 ⊢ 5 ∈ ℕ0 | |
2 | 1nn0 12299 | . 2 ⊢ 1 ∈ ℕ0 | |
3 | df-2 12086 | . 2 ⊢ 2 = (1 + 1) | |
4 | 5cn 12111 | . . 3 ⊢ 5 ∈ ℂ | |
5 | 4 | mulid1i 11029 | . 2 ⊢ (5 · 1) = 5 |
6 | 5p5e10 12558 | . 2 ⊢ (5 + 5) = ;10 | |
7 | 1, 2, 3, 5, 6 | 4t3lem 12584 | 1 ⊢ (5 · 2) = ;10 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7307 0cc0 10921 1c1 10922 · cmul 10926 2c2 12078 5c5 12081 ;cdc 12487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-ltxr 11064 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-dec 12488 |
This theorem is referenced by: 5t3e15 12588 dec2dvds 16813 dec5dvds 16814 dec5nprm 16816 dec2nprm 16817 2exp16 16841 10nprm 16864 1259lem1 16881 1259lem4 16884 2503lem1 16887 2503lem2 16888 2503lem3 16889 4001lem1 16891 4001lem4 16894 4001prm 16895 log2ublem3 26147 log2ub 26148 bclbnd 26477 bpos1 26480 bposlem4 26484 bposlem5 26485 bposlem8 26488 ex-fac 28864 12gcd5e1 40211 12lcm5e60 40216 lcmineqlem23 40259 3lexlogpow5ineq5 40268 aks4d1p1p7 40282 aks4d1p1 40284 127prm 45295 41prothprm 45315 2exp340mod341 45429 |
Copyright terms: Public domain | W3C validator |