MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5t2e10 Structured version   Visualization version   GIF version

Theorem 5t2e10 12587
Description: 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.)
Assertion
Ref Expression
5t2e10 (5 · 2) = 10

Proof of Theorem 5t2e10
StepHypRef Expression
1 5nn0 12303 . 2 5 ∈ ℕ0
2 1nn0 12299 . 2 1 ∈ ℕ0
3 df-2 12086 . 2 2 = (1 + 1)
4 5cn 12111 . . 3 5 ∈ ℂ
54mulid1i 11029 . 2 (5 · 1) = 5
6 5p5e10 12558 . 2 (5 + 5) = 10
71, 2, 3, 5, 64t3lem 12584 1 (5 · 2) = 10
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  (class class class)co 7307  0cc0 10921  1c1 10922   · cmul 10926  2c2 12078  5c5 12081  cdc 12487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-ltxr 11064  df-nn 12024  df-2 12086  df-3 12087  df-4 12088  df-5 12089  df-6 12090  df-7 12091  df-8 12092  df-9 12093  df-n0 12284  df-dec 12488
This theorem is referenced by:  5t3e15  12588  dec2dvds  16813  dec5dvds  16814  dec5nprm  16816  dec2nprm  16817  2exp16  16841  10nprm  16864  1259lem1  16881  1259lem4  16884  2503lem1  16887  2503lem2  16888  2503lem3  16889  4001lem1  16891  4001lem4  16894  4001prm  16895  log2ublem3  26147  log2ub  26148  bclbnd  26477  bpos1  26480  bposlem4  26484  bposlem5  26485  bposlem8  26488  ex-fac  28864  12gcd5e1  40211  12lcm5e60  40216  lcmineqlem23  40259  3lexlogpow5ineq5  40268  aks4d1p1p7  40282  aks4d1p1  40284  127prm  45295  41prothprm  45315  2exp340mod341  45429
  Copyright terms: Public domain W3C validator