| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5t2e10 | Structured version Visualization version GIF version | ||
| Description: 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.) |
| Ref | Expression |
|---|---|
| 5t2e10 | ⊢ (5 · 2) = ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn0 12412 | . 2 ⊢ 5 ∈ ℕ0 | |
| 2 | 1nn0 12408 | . 2 ⊢ 1 ∈ ℕ0 | |
| 3 | df-2 12199 | . 2 ⊢ 2 = (1 + 1) | |
| 4 | 5cn 12224 | . . 3 ⊢ 5 ∈ ℂ | |
| 5 | 4 | mulridi 11127 | . 2 ⊢ (5 · 1) = 5 |
| 6 | 5p5e10 12669 | . 2 ⊢ (5 + 5) = ;10 | |
| 7 | 1, 2, 3, 5, 6 | 4t3lem 12695 | 1 ⊢ (5 · 2) = ;10 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7355 0cc0 11017 1c1 11018 · cmul 11022 2c2 12191 5c5 12194 ;cdc 12598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-dec 12599 |
| This theorem is referenced by: 5t3e15 12699 dec2dvds 16982 dec5dvds 16983 dec5nprm 16985 dec2nprm 16986 2exp16 17009 10nprm 17032 1259lem1 17049 1259lem4 17052 2503lem1 17055 2503lem2 17056 2503lem3 17057 4001lem1 17059 4001lem4 17062 4001prm 17063 log2ublem3 26905 log2ub 26906 bclbnd 27238 bpos1 27241 bposlem4 27245 bposlem5 27246 bposlem8 27249 ex-fac 30452 12gcd5e1 42169 12lcm5e60 42174 lcmineqlem23 42217 3lexlogpow5ineq5 42226 aks4d1p1p7 42240 aks4d1p1 42242 sum9cubes 42830 127prm 47761 41prothprm 47781 2exp340mod341 47895 gpg5order 48222 |
| Copyright terms: Public domain | W3C validator |