Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5t2e10 | Structured version Visualization version GIF version |
Description: 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
5t2e10 | ⊢ (5 · 2) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 12251 | . 2 ⊢ 5 ∈ ℕ0 | |
2 | 1nn0 12247 | . 2 ⊢ 1 ∈ ℕ0 | |
3 | df-2 12034 | . 2 ⊢ 2 = (1 + 1) | |
4 | 5cn 12059 | . . 3 ⊢ 5 ∈ ℂ | |
5 | 4 | mulid1i 10977 | . 2 ⊢ (5 · 1) = 5 |
6 | 5p5e10 12506 | . 2 ⊢ (5 + 5) = ;10 | |
7 | 1, 2, 3, 5, 6 | 4t3lem 12532 | 1 ⊢ (5 · 2) = ;10 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7277 0cc0 10869 1c1 10870 · cmul 10874 2c2 12026 5c5 12029 ;cdc 12435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-ov 7280 df-om 7713 df-2nd 7832 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-er 8496 df-en 8732 df-dom 8733 df-sdom 8734 df-pnf 11009 df-mnf 11010 df-ltxr 11012 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-dec 12436 |
This theorem is referenced by: 5t3e15 12536 dec2dvds 16762 dec5dvds 16763 dec5nprm 16765 dec2nprm 16766 2exp16 16790 10nprm 16813 1259lem1 16830 1259lem4 16833 2503lem1 16836 2503lem2 16837 2503lem3 16838 4001lem1 16840 4001lem4 16843 4001prm 16844 log2ublem3 26096 log2ub 26097 bclbnd 26426 bpos1 26429 bposlem4 26433 bposlem5 26434 bposlem8 26437 ex-fac 28812 12gcd5e1 40008 12lcm5e60 40013 lcmineqlem23 40056 3lexlogpow5ineq5 40065 aks4d1p1p7 40079 aks4d1p1 40081 127prm 45018 41prothprm 45038 2exp340mod341 45152 |
Copyright terms: Public domain | W3C validator |