MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrraddi Structured version   Visualization version   GIF version

Theorem mvrraddi 11249
Description: Move the right term in a sum on the RHS to the LHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
mvrraddi.1 𝐵 ∈ ℂ
mvrraddi.2 𝐶 ∈ ℂ
mvrraddi.3 𝐴 = (𝐵 + 𝐶)
Assertion
Ref Expression
mvrraddi (𝐴𝐶) = 𝐵

Proof of Theorem mvrraddi
StepHypRef Expression
1 mvrraddi.3 . . 3 𝐴 = (𝐵 + 𝐶)
21oveq1i 7282 . 2 (𝐴𝐶) = ((𝐵 + 𝐶) − 𝐶)
3 mvrraddi.1 . . 3 𝐵 ∈ ℂ
4 mvrraddi.2 . . 3 𝐶 ∈ ℂ
53, 4pncan3oi 11248 . 2 ((𝐵 + 𝐶) − 𝐶) = 𝐵
62, 5eqtri 2768 1 (𝐴𝐶) = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2110  (class class class)co 7272  cc 10880   + caddc 10885  cmin 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-ltxr 11025  df-sub 11218
This theorem is referenced by:  3m1e2  12112  4m1e3  12113  5m1e4  12114  6m1e5  12115  7m1e6  12116  8m1e7  12117  9m1e8  12118  10m1e9  12544  pockthi  16619  1259lem4  16846  1259prm  16848  2503lem2  16850  4001lem3  16855  4001prm  16857  birthday  26115  ppiub  26363  chtub  26371  lgsdir2lem2  26485  2lgsoddprmlem3c  26571  2lgsoddprmlem3d  26572  ex-ind-dvds  28834  fmtno5  44988  mogoldbb  45216  ackval3012  46017  ackval41  46020
  Copyright terms: Public domain W3C validator