MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrraddi Structured version   Visualization version   GIF version

Theorem mvrraddi 10881
Description: Move RHS right addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
mvrraddi.1 𝐵 ∈ ℂ
mvrraddi.2 𝐶 ∈ ℂ
mvrraddi.3 𝐴 = (𝐵 + 𝐶)
Assertion
Ref Expression
mvrraddi (𝐴𝐶) = 𝐵

Proof of Theorem mvrraddi
StepHypRef Expression
1 mvrraddi.3 . . 3 𝐴 = (𝐵 + 𝐶)
21oveq1i 7143 . 2 (𝐴𝐶) = ((𝐵 + 𝐶) − 𝐶)
3 mvrraddi.1 . . 3 𝐵 ∈ ℂ
4 mvrraddi.2 . . 3 𝐶 ∈ ℂ
53, 4pncan3oi 10880 . 2 ((𝐵 + 𝐶) − 𝐶) = 𝐵
62, 5eqtri 2843 1 (𝐴𝐶) = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  (class class class)co 7133  cc 10513   + caddc 10518  cmin 10848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-po 5450  df-so 5451  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-ltxr 10658  df-sub 10850
This theorem is referenced by:  3m1e2  11744  4m1e3  11745  5m1e4  11746  6m1e5  11747  7m1e6  11748  8m1e7  11749  9m1e8  11750  10m1e9  12173  pockthi  16221  1259lem4  16446  1259prm  16448  2503lem2  16450  4001lem3  16455  4001prm  16457  birthday  25519  ppiub  25767  chtub  25775  lgsdir2lem2  25889  2lgsoddprmlem3c  25975  2lgsoddprmlem3d  25976  ex-ind-dvds  28225  fmtno5  43865  mogoldbb  44095  ackval3012  44866  ackval41  44869
  Copyright terms: Public domain W3C validator