Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mvrraddi | Structured version Visualization version GIF version |
Description: Move the right term in a sum on the RHS to the LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
Ref | Expression |
---|---|
mvrraddi.1 | ⊢ 𝐵 ∈ ℂ |
mvrraddi.2 | ⊢ 𝐶 ∈ ℂ |
mvrraddi.3 | ⊢ 𝐴 = (𝐵 + 𝐶) |
Ref | Expression |
---|---|
mvrraddi | ⊢ (𝐴 − 𝐶) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrraddi.3 | . . 3 ⊢ 𝐴 = (𝐵 + 𝐶) | |
2 | 1 | oveq1i 7282 | . 2 ⊢ (𝐴 − 𝐶) = ((𝐵 + 𝐶) − 𝐶) |
3 | mvrraddi.1 | . . 3 ⊢ 𝐵 ∈ ℂ | |
4 | mvrraddi.2 | . . 3 ⊢ 𝐶 ∈ ℂ | |
5 | 3, 4 | pncan3oi 11248 | . 2 ⊢ ((𝐵 + 𝐶) − 𝐶) = 𝐵 |
6 | 2, 5 | eqtri 2768 | 1 ⊢ (𝐴 − 𝐶) = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2110 (class class class)co 7272 ℂcc 10880 + caddc 10885 − cmin 11216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-ltxr 11025 df-sub 11218 |
This theorem is referenced by: 3m1e2 12112 4m1e3 12113 5m1e4 12114 6m1e5 12115 7m1e6 12116 8m1e7 12117 9m1e8 12118 10m1e9 12544 pockthi 16619 1259lem4 16846 1259prm 16848 2503lem2 16850 4001lem3 16855 4001prm 16857 birthday 26115 ppiub 26363 chtub 26371 lgsdir2lem2 26485 2lgsoddprmlem3c 26571 2lgsoddprmlem3d 26572 ex-ind-dvds 28834 fmtno5 44988 mogoldbb 45216 ackval3012 46017 ackval41 46020 |
Copyright terms: Public domain | W3C validator |