| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgprismgr4cycllem11 | Structured version Visualization version GIF version | ||
| Description: Lemma 11 for gpgprismgr4cycl0 48053. (Contributed by AV, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| gpgprismgr4cycl.p | ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 |
| gpgprismgr4cycl.f | ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 |
| gpgprismgr4cycl.g | ⊢ 𝐺 = (𝑁 gPetersenGr 1) |
| Ref | Expression |
|---|---|
| gpgprismgr4cycllem11 | ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Cycles‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpgprismgr4cycl.p | . . . . 5 ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 | |
| 2 | 1 | gpgprismgr4cycllem5 48046 | . . . 4 ⊢ 𝑃 ∈ Word V |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃 ∈ Word V) |
| 4 | 1 | gpgprismgr4cycllem4 48045 | . . . . . 6 ⊢ (♯‘𝑃) = 5 |
| 5 | 4 | oveq1i 7413 | . . . . 5 ⊢ ((♯‘𝑃) − 1) = (5 − 1) |
| 6 | 5m1e4 12368 | . . . . 5 ⊢ (5 − 1) = 4 | |
| 7 | 5, 6 | eqtri 2758 | . . . 4 ⊢ ((♯‘𝑃) − 1) = 4 |
| 8 | 7 | eqcomi 2744 | . . 3 ⊢ 4 = ((♯‘𝑃) − 1) |
| 9 | 1 | gpgprismgr4cycllem7 48048 | . . . . 5 ⊢ ((𝑥 ∈ (0..^(♯‘𝑃)) ∧ 𝑦 ∈ (1..^4)) → (𝑥 ≠ 𝑦 → (𝑃‘𝑥) ≠ (𝑃‘𝑦))) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (𝑥 ∈ (0..^(♯‘𝑃)) ∧ 𝑦 ∈ (1..^4))) → (𝑥 ≠ 𝑦 → (𝑃‘𝑥) ≠ (𝑃‘𝑦))) |
| 11 | 10 | ralrimivva 3187 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → ∀𝑥 ∈ (0..^(♯‘𝑃))∀𝑦 ∈ (1..^4)(𝑥 ≠ 𝑦 → (𝑃‘𝑥) ≠ (𝑃‘𝑦))) |
| 12 | gpgprismgr4cycl.f | . . . 4 ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 | |
| 13 | 12 | gpgprismgr4cycllem1 48042 | . . 3 ⊢ (♯‘𝐹) = 4 |
| 14 | gpgprismgr4cycl.g | . . . . . 6 ⊢ 𝐺 = (𝑁 gPetersenGr 1) | |
| 15 | 1, 12, 14 | gpgprismgr4cycllem8 48049 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
| 16 | 1, 12, 14 | gpgprismgr4cycllem9 48050 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 17 | 1, 12, 14 | gpgprismgr4cycllem10 48051 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑥 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
| 18 | 17 | ralrimiva 3132 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → ∀𝑥 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
| 19 | gpgprismgrusgra 48010 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 gPetersenGr 1) ∈ USGraph) | |
| 20 | 14 | eleq1i 2825 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph ↔ (𝑁 gPetersenGr 1) ∈ USGraph) |
| 21 | usgrupgr 29110 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
| 22 | 20, 21 | sylbir 235 | . . . . . 6 ⊢ ((𝑁 gPetersenGr 1) ∈ USGraph → 𝐺 ∈ UPGraph) |
| 23 | eqid 2735 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 24 | eqid 2735 | . . . . . . 7 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 25 | 23, 24 | upgriswlk 29567 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) |
| 26 | 19, 22, 25 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) |
| 27 | 15, 16, 18, 26 | mpbir3and 1343 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Walks‘𝐺)𝑃) |
| 28 | 12 | gpgprismgr4cycllem2 48043 | . . . 4 ⊢ Fun ◡𝐹 |
| 29 | istrl 29622 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
| 30 | 27, 28, 29 | sylanblrc 590 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Trails‘𝐺)𝑃) |
| 31 | 3, 8, 11, 13, 30 | pthd 29697 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Paths‘𝐺)𝑃) |
| 32 | 1 | gpgprismgr4cycllem6 48047 | . . 3 ⊢ (𝑃‘0) = (𝑃‘4) |
| 33 | 13 | eqcomi 2744 | . . . 4 ⊢ 4 = (♯‘𝐹) |
| 34 | 33 | fveq2i 6878 | . . 3 ⊢ (𝑃‘4) = (𝑃‘(♯‘𝐹)) |
| 35 | 32, 34 | eqtri 2758 | . 2 ⊢ (𝑃‘0) = (𝑃‘(♯‘𝐹)) |
| 36 | iscycl 29719 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 37 | 31, 35, 36 | sylanblrc 590 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Cycles‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 Vcvv 3459 {cpr 4603 〈cop 4607 class class class wbr 5119 ◡ccnv 5653 dom cdm 5654 Fun wfun 6524 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 0cc0 11127 1c1 11128 + caddc 11130 − cmin 11464 3c3 12294 4c4 12295 5c5 12296 ℤ≥cuz 12850 ...cfz 13522 ..^cfzo 13669 ♯chash 14346 Word cword 14529 〈“cs4 14860 〈“cs5 14861 Vtxcvtx 28921 iEdgciedg 28922 UPGraphcupgr 29005 USGraphcusgr 29074 Walkscwlks 29522 Trailsctrls 29616 Pathscpths 29638 Cyclesccycls 29713 gPetersenGr cgpg 47992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-xnn0 12573 df-z 12587 df-dec 12707 df-uz 12851 df-rp 13007 df-ico 13366 df-fz 13523 df-fzo 13670 df-fl 13807 df-ceil 13808 df-mod 13885 df-hash 14347 df-word 14530 df-concat 14587 df-s1 14612 df-s2 14865 df-s3 14866 df-s4 14867 df-s5 14868 df-dvds 16271 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-edgf 28914 df-vtx 28923 df-iedg 28924 df-edg 28973 df-uhgr 28983 df-upgr 29007 df-uspgr 29075 df-usgr 29076 df-wlks 29525 df-trls 29618 df-pths 29642 df-cycls 29715 df-gpg 47993 |
| This theorem is referenced by: gpgprismgr4cycl0 48053 |
| Copyright terms: Public domain | W3C validator |