| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgprismgr4cycllem11 | Structured version Visualization version GIF version | ||
| Description: Lemma 11 for gpgprismgr4cycl0 48100. (Contributed by AV, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| gpgprismgr4cycl.p | ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 |
| gpgprismgr4cycl.f | ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 |
| gpgprismgr4cycl.g | ⊢ 𝐺 = (𝑁 gPetersenGr 1) |
| Ref | Expression |
|---|---|
| gpgprismgr4cycllem11 | ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Cycles‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpgprismgr4cycl.p | . . . . 5 ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 | |
| 2 | 1 | gpgprismgr4cycllem5 48093 | . . . 4 ⊢ 𝑃 ∈ Word V |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃 ∈ Word V) |
| 4 | 1 | gpgprismgr4cycllem4 48092 | . . . . . 6 ⊢ (♯‘𝑃) = 5 |
| 5 | 4 | oveq1i 7359 | . . . . 5 ⊢ ((♯‘𝑃) − 1) = (5 − 1) |
| 6 | 5m1e4 12253 | . . . . 5 ⊢ (5 − 1) = 4 | |
| 7 | 5, 6 | eqtri 2752 | . . . 4 ⊢ ((♯‘𝑃) − 1) = 4 |
| 8 | 7 | eqcomi 2738 | . . 3 ⊢ 4 = ((♯‘𝑃) − 1) |
| 9 | 1 | gpgprismgr4cycllem7 48095 | . . . . 5 ⊢ ((𝑥 ∈ (0..^(♯‘𝑃)) ∧ 𝑦 ∈ (1..^4)) → (𝑥 ≠ 𝑦 → (𝑃‘𝑥) ≠ (𝑃‘𝑦))) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (𝑥 ∈ (0..^(♯‘𝑃)) ∧ 𝑦 ∈ (1..^4))) → (𝑥 ≠ 𝑦 → (𝑃‘𝑥) ≠ (𝑃‘𝑦))) |
| 11 | 10 | ralrimivva 3172 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → ∀𝑥 ∈ (0..^(♯‘𝑃))∀𝑦 ∈ (1..^4)(𝑥 ≠ 𝑦 → (𝑃‘𝑥) ≠ (𝑃‘𝑦))) |
| 12 | gpgprismgr4cycl.f | . . . 4 ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 | |
| 13 | 12 | gpgprismgr4cycllem1 48089 | . . 3 ⊢ (♯‘𝐹) = 4 |
| 14 | gpgprismgr4cycl.g | . . . . . 6 ⊢ 𝐺 = (𝑁 gPetersenGr 1) | |
| 15 | 1, 12, 14 | gpgprismgr4cycllem8 48096 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
| 16 | 1, 12, 14 | gpgprismgr4cycllem9 48097 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 17 | 1, 12, 14 | gpgprismgr4cycllem10 48098 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑥 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
| 18 | 17 | ralrimiva 3121 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → ∀𝑥 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
| 19 | gpgprismgrusgra 48052 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 gPetersenGr 1) ∈ USGraph) | |
| 20 | 14 | eleq1i 2819 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph ↔ (𝑁 gPetersenGr 1) ∈ USGraph) |
| 21 | usgrupgr 29130 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
| 22 | 20, 21 | sylbir 235 | . . . . . 6 ⊢ ((𝑁 gPetersenGr 1) ∈ USGraph → 𝐺 ∈ UPGraph) |
| 23 | eqid 2729 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 24 | eqid 2729 | . . . . . . 7 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 25 | 23, 24 | upgriswlk 29586 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) |
| 26 | 19, 22, 25 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) |
| 27 | 15, 16, 18, 26 | mpbir3and 1343 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Walks‘𝐺)𝑃) |
| 28 | 12 | gpgprismgr4cycllem2 48090 | . . . 4 ⊢ Fun ◡𝐹 |
| 29 | istrl 29640 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
| 30 | 27, 28, 29 | sylanblrc 590 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Trails‘𝐺)𝑃) |
| 31 | 3, 8, 11, 13, 30 | pthd 29714 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Paths‘𝐺)𝑃) |
| 32 | 1 | gpgprismgr4cycllem6 48094 | . . 3 ⊢ (𝑃‘0) = (𝑃‘4) |
| 33 | 13 | eqcomi 2738 | . . . 4 ⊢ 4 = (♯‘𝐹) |
| 34 | 33 | fveq2i 6825 | . . 3 ⊢ (𝑃‘4) = (𝑃‘(♯‘𝐹)) |
| 35 | 32, 34 | eqtri 2752 | . 2 ⊢ (𝑃‘0) = (𝑃‘(♯‘𝐹)) |
| 36 | iscycl 29736 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 37 | 31, 35, 36 | sylanblrc 590 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Cycles‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3436 {cpr 4579 〈cop 4583 class class class wbr 5092 ◡ccnv 5618 dom cdm 5619 Fun wfun 6476 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 − cmin 11347 3c3 12184 4c4 12185 5c5 12186 ℤ≥cuz 12735 ...cfz 13410 ..^cfzo 13557 ♯chash 14237 Word cword 14420 〈“cs4 14750 〈“cs5 14751 Vtxcvtx 28941 iEdgciedg 28942 UPGraphcupgr 29025 USGraphcusgr 29094 Walkscwlks 29542 Trailsctrls 29634 Pathscpths 29655 Cyclesccycls 29730 gPetersenGr cgpg 48034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-ico 13254 df-fz 13411 df-fzo 13558 df-fl 13696 df-ceil 13697 df-mod 13774 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-s2 14755 df-s3 14756 df-s4 14757 df-s5 14758 df-dvds 16164 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-edgf 28934 df-vtx 28943 df-iedg 28944 df-edg 28993 df-uhgr 29003 df-upgr 29027 df-uspgr 29095 df-usgr 29096 df-wlks 29545 df-trls 29636 df-pths 29659 df-cycls 29732 df-gpg 48035 |
| This theorem is referenced by: gpgprismgr4cycl0 48100 |
| Copyright terms: Public domain | W3C validator |