| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgprismgr4cycllem11 | Structured version Visualization version GIF version | ||
| Description: Lemma 11 for gpgprismgr4cycl0 48089. (Contributed by AV, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| gpgprismgr4cycl.p | ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 |
| gpgprismgr4cycl.f | ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 |
| gpgprismgr4cycl.g | ⊢ 𝐺 = (𝑁 gPetersenGr 1) |
| Ref | Expression |
|---|---|
| gpgprismgr4cycllem11 | ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Cycles‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpgprismgr4cycl.p | . . . . 5 ⊢ 𝑃 = 〈“〈0, 0〉〈0, 1〉〈1, 1〉〈1, 0〉〈0, 0〉”〉 | |
| 2 | 1 | gpgprismgr4cycllem5 48082 | . . . 4 ⊢ 𝑃 ∈ Word V |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃 ∈ Word V) |
| 4 | 1 | gpgprismgr4cycllem4 48081 | . . . . . 6 ⊢ (♯‘𝑃) = 5 |
| 5 | 4 | oveq1i 7379 | . . . . 5 ⊢ ((♯‘𝑃) − 1) = (5 − 1) |
| 6 | 5m1e4 12287 | . . . . 5 ⊢ (5 − 1) = 4 | |
| 7 | 5, 6 | eqtri 2752 | . . . 4 ⊢ ((♯‘𝑃) − 1) = 4 |
| 8 | 7 | eqcomi 2738 | . . 3 ⊢ 4 = ((♯‘𝑃) − 1) |
| 9 | 1 | gpgprismgr4cycllem7 48084 | . . . . 5 ⊢ ((𝑥 ∈ (0..^(♯‘𝑃)) ∧ 𝑦 ∈ (1..^4)) → (𝑥 ≠ 𝑦 → (𝑃‘𝑥) ≠ (𝑃‘𝑦))) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (𝑥 ∈ (0..^(♯‘𝑃)) ∧ 𝑦 ∈ (1..^4))) → (𝑥 ≠ 𝑦 → (𝑃‘𝑥) ≠ (𝑃‘𝑦))) |
| 11 | 10 | ralrimivva 3178 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → ∀𝑥 ∈ (0..^(♯‘𝑃))∀𝑦 ∈ (1..^4)(𝑥 ≠ 𝑦 → (𝑃‘𝑥) ≠ (𝑃‘𝑦))) |
| 12 | gpgprismgr4cycl.f | . . . 4 ⊢ 𝐹 = 〈“{〈0, 0〉, 〈0, 1〉} {〈0, 1〉, 〈1, 1〉} {〈1, 1〉, 〈1, 0〉} {〈1, 0〉, 〈0, 0〉}”〉 | |
| 13 | 12 | gpgprismgr4cycllem1 48078 | . . 3 ⊢ (♯‘𝐹) = 4 |
| 14 | gpgprismgr4cycl.g | . . . . . 6 ⊢ 𝐺 = (𝑁 gPetersenGr 1) | |
| 15 | 1, 12, 14 | gpgprismgr4cycllem8 48085 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
| 16 | 1, 12, 14 | gpgprismgr4cycllem9 48086 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 17 | 1, 12, 14 | gpgprismgr4cycllem10 48087 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑥 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
| 18 | 17 | ralrimiva 3125 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → ∀𝑥 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
| 19 | gpgprismgrusgra 48042 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 gPetersenGr 1) ∈ USGraph) | |
| 20 | 14 | eleq1i 2819 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph ↔ (𝑁 gPetersenGr 1) ∈ USGraph) |
| 21 | usgrupgr 29165 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
| 22 | 20, 21 | sylbir 235 | . . . . . 6 ⊢ ((𝑁 gPetersenGr 1) ∈ USGraph → 𝐺 ∈ UPGraph) |
| 23 | eqid 2729 | . . . . . . 7 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 24 | eqid 2729 | . . . . . . 7 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 25 | 23, 24 | upgriswlk 29621 | . . . . . 6 ⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) |
| 26 | 19, 22, 25 | 3syl 18 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}))) |
| 27 | 15, 16, 18, 26 | mpbir3and 1343 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Walks‘𝐺)𝑃) |
| 28 | 12 | gpgprismgr4cycllem2 48079 | . . . 4 ⊢ Fun ◡𝐹 |
| 29 | istrl 29675 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
| 30 | 27, 28, 29 | sylanblrc 590 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Trails‘𝐺)𝑃) |
| 31 | 3, 8, 11, 13, 30 | pthd 29749 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Paths‘𝐺)𝑃) |
| 32 | 1 | gpgprismgr4cycllem6 48083 | . . 3 ⊢ (𝑃‘0) = (𝑃‘4) |
| 33 | 13 | eqcomi 2738 | . . . 4 ⊢ 4 = (♯‘𝐹) |
| 34 | 33 | fveq2i 6843 | . . 3 ⊢ (𝑃‘4) = (𝑃‘(♯‘𝐹)) |
| 35 | 32, 34 | eqtri 2752 | . 2 ⊢ (𝑃‘0) = (𝑃‘(♯‘𝐹)) |
| 36 | iscycl 29771 | . 2 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 37 | 31, 35, 36 | sylanblrc 590 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝐹(Cycles‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3444 {cpr 4587 〈cop 4591 class class class wbr 5102 ◡ccnv 5630 dom cdm 5631 Fun wfun 6493 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 − cmin 11381 3c3 12218 4c4 12219 5c5 12220 ℤ≥cuz 12769 ...cfz 13444 ..^cfzo 13591 ♯chash 14271 Word cword 14454 〈“cs4 14785 〈“cs5 14786 Vtxcvtx 28976 iEdgciedg 28977 UPGraphcupgr 29060 USGraphcusgr 29129 Walkscwlks 29577 Trailsctrls 29669 Pathscpths 29690 Cyclesccycls 29765 gPetersenGr cgpg 48024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-ico 13288 df-fz 13445 df-fzo 13592 df-fl 13730 df-ceil 13731 df-mod 13808 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-s2 14790 df-s3 14791 df-s4 14792 df-s5 14793 df-dvds 16199 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-edgf 28969 df-vtx 28978 df-iedg 28979 df-edg 29028 df-uhgr 29038 df-upgr 29062 df-uspgr 29130 df-usgr 29131 df-wlks 29580 df-trls 29671 df-pths 29694 df-cycls 29767 df-gpg 48025 |
| This theorem is referenced by: gpgprismgr4cycl0 48089 |
| Copyright terms: Public domain | W3C validator |