| Step | Hyp | Ref
| Expression |
| 1 | | df-s8 14761 |
. . 3
⊢
〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)ℝℂ”〉 =
(〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)ℝ”〉 ++
〈“ℂ”〉) |
| 2 | | cnex 11087 |
. . . . 5
⊢ ℂ
∈ V |
| 3 | 2 | a1i 11 |
. . . 4
⊢ (⊤
→ ℂ ∈ V) |
| 4 | | df-s7 14760 |
. . . . 5
⊢
〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)ℝ”〉 =
(〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)”〉 ++ 〈“ℝ”〉) |
| 5 | | reex 11097 |
. . . . . . 7
⊢ ℝ
∈ V |
| 6 | 5 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ℝ ∈ V) |
| 7 | | df-s6 14759 |
. . . . . . 7
⊢
〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)”〉 =
(〈“{1}ℕℕ0ℤℚ”〉 ++
〈“(𝔸 ∩ ℝ)”〉) |
| 8 | 5 | inex2 5254 |
. . . . . . . . 9
⊢
(𝔸 ∩ ℝ) ∈ V |
| 9 | 8 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ (𝔸 ∩ ℝ) ∈ V) |
| 10 | | df-s5 14758 |
. . . . . . . . 9
⊢
〈“{1}ℕℕ0ℤℚ”〉 =
(〈“{1}ℕℕ0ℤ”〉 ++
〈“ℚ”〉) |
| 11 | | qex 12859 |
. . . . . . . . . . 11
⊢ ℚ
∈ V |
| 12 | 11 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ ℚ ∈ V) |
| 13 | | df-s4 14757 |
. . . . . . . . . . 11
⊢
〈“{1}ℕℕ0ℤ”〉 =
(〈“{1}ℕℕ0”〉 ++
〈“ℤ”〉) |
| 14 | | zex 12477 |
. . . . . . . . . . . . 13
⊢ ℤ
∈ V |
| 15 | 14 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ ℤ ∈ V) |
| 16 | | df-s3 14756 |
. . . . . . . . . . . . 13
⊢
〈“{1}ℕℕ0”〉 =
(〈“{1}ℕ”〉 ++
〈“ℕ0”〉) |
| 17 | | nn0ex 12387 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 ∈ V |
| 18 | 17 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ ℕ0 ∈ V) |
| 19 | | df-s2 14755 |
. . . . . . . . . . . . . . 15
⊢
〈“{1}ℕ”〉 = (〈“{1}”〉 ++
〈“ℕ”〉) |
| 20 | | nnex 12131 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ
∈ V |
| 21 | 20 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ ℕ ∈ V) |
| 22 | | snex 5372 |
. . . . . . . . . . . . . . . . . 18
⊢ {1}
∈ V |
| 23 | 22 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ {1} ∈ V) |
| 24 | 23 | s1chn 18526 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ 〈“{1}”〉 ∈ ( < Chain
V)) |
| 25 | | lsws1 14519 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({1}
∈ V → (lastS‘〈“{1}”〉) =
{1}) |
| 26 | 22, 25 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(lastS‘〈“{1}”〉) = {1} |
| 27 | | 1nn 12136 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℕ |
| 28 | | 1ex 11108 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
V |
| 29 | 28 | snss 4734 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 ∈
ℕ ↔ {1} ⊆ ℕ) |
| 30 | 27, 29 | mpbi 230 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {1}
⊆ ℕ |
| 31 | | 2nn 12198 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℕ |
| 32 | | 1re 11112 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℝ |
| 33 | | 1lt2 12291 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 <
2 |
| 34 | | ltne 11210 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((1
∈ ℝ ∧ 1 < 2) → 2 ≠ 1) |
| 35 | 32, 33, 34 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 2 ≠
1 |
| 36 | | nelsn 4616 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (2 ≠ 1
→ ¬ 2 ∈ {1}) |
| 37 | 35, 36 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ¬ 2
∈ {1} |
| 38 | 31, 37 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2 ∈
ℕ ∧ ¬ 2 ∈ {1}) |
| 39 | | ssnelpss 4061 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({1}
⊆ ℕ → ((2 ∈ ℕ ∧ ¬ 2 ∈ {1}) → {1}
⊊ ℕ)) |
| 40 | 30, 38, 39 | mp2 9 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {1}
⊊ ℕ |
| 41 | | psseq1 4037 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = {1} → (𝑥 ⊊ 𝑦 ↔ {1} ⊊ 𝑦)) |
| 42 | | psseq2 4038 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = ℕ → ({1} ⊊
𝑦 ↔ {1} ⊊
ℕ)) |
| 43 | | nthrucw.1 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ < =
{〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} |
| 44 | 41, 42, 43 | brabg 5477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (({1}
∈ V ∧ ℕ ∈ V) → ({1} < ℕ ↔ {1}
⊊ ℕ)) |
| 45 | 22, 20, 44 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({1}
<
ℕ ↔ {1} ⊊ ℕ) |
| 46 | 40, 45 | mpbir 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ {1} <
ℕ |
| 47 | 26, 46 | eqbrtri 5110 |
. . . . . . . . . . . . . . . . . 18
⊢
(lastS‘〈“{1}”〉) <
ℕ |
| 48 | 47 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (⊤
→ (lastS‘〈“{1}”〉) <
ℕ) |
| 49 | 48 | olcd 874 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (〈“{1}”〉 = ∅ ∨
(lastS‘〈“{1}”〉) <
ℕ)) |
| 50 | 21, 24, 49 | chnccats1 18531 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (〈“{1}”〉 ++ 〈“ℕ”〉)
∈ ( < Chain
V)) |
| 51 | 19, 50 | eqeltrid 2835 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ 〈“{1}ℕ”〉 ∈ ( < Chain
V)) |
| 52 | | lsws2 14811 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℕ
∈ V → (lastS‘〈“{1}ℕ”〉) =
ℕ) |
| 53 | 20, 52 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(lastS‘〈“{1}ℕ”〉) =
ℕ |
| 54 | | nthruz 16162 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℕ
⊊ ℕ0 ∧ ℕ0 ⊊
ℤ) |
| 55 | 54 | simpli 483 |
. . . . . . . . . . . . . . . . . 18
⊢ ℕ
⊊ ℕ0 |
| 56 | | psseq1 4037 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = ℕ → (𝑥 ⊊ 𝑦 ↔ ℕ ⊊ 𝑦)) |
| 57 | | psseq2 4038 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = ℕ0 →
(ℕ ⊊ 𝑦 ↔
ℕ ⊊ ℕ0)) |
| 58 | 56, 57, 43 | brabg 5477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℕ
∈ V ∧ ℕ0 ∈ V) → (ℕ < ℕ0
↔ ℕ ⊊ ℕ0)) |
| 59 | 20, 17, 58 | mp2an 692 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℕ
<
ℕ0 ↔ ℕ ⊊
ℕ0) |
| 60 | 55, 59 | mpbir 231 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ
<
ℕ0 |
| 61 | 53, 60 | eqbrtri 5110 |
. . . . . . . . . . . . . . . 16
⊢
(lastS‘〈“{1}ℕ”〉) <
ℕ0 |
| 62 | 61 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (lastS‘〈“{1}ℕ”〉) <
ℕ0) |
| 63 | 62 | olcd 874 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ (〈“{1}ℕ”〉 = ∅ ∨
(lastS‘〈“{1}ℕ”〉) <
ℕ0)) |
| 64 | 18, 51, 63 | chnccats1 18531 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (〈“{1}ℕ”〉 ++
〈“ℕ0”〉) ∈ ( < Chain
V)) |
| 65 | 16, 64 | eqeltrid 2835 |
. . . . . . . . . . . 12
⊢ (⊤
→ 〈“{1}ℕℕ0”〉 ∈ ( < Chain
V)) |
| 66 | | lsws3 14812 |
. . . . . . . . . . . . . . . 16
⊢
(ℕ0 ∈ V →
(lastS‘〈“{1}ℕℕ0”〉) =
ℕ0) |
| 67 | 17, 66 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(lastS‘〈“{1}ℕℕ0”〉) =
ℕ0 |
| 68 | 54 | simpri 485 |
. . . . . . . . . . . . . . . 16
⊢
ℕ0 ⊊ ℤ |
| 69 | | psseq1 4037 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ℕ0 →
(𝑥 ⊊ 𝑦 ↔ ℕ0
⊊ 𝑦)) |
| 70 | | psseq2 4038 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = ℤ →
(ℕ0 ⊊ 𝑦 ↔ ℕ0 ⊊
ℤ)) |
| 71 | 69, 70, 43 | brabg 5477 |
. . . . . . . . . . . . . . . . 17
⊢
((ℕ0 ∈ V ∧ ℤ ∈ V) →
(ℕ0 < ℤ ↔
ℕ0 ⊊ ℤ)) |
| 72 | 17, 14, 71 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢
(ℕ0 < ℤ ↔
ℕ0 ⊊ ℤ) |
| 73 | 68, 72 | mpbir 231 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 <
ℤ |
| 74 | 67, 73 | eqbrtri 5110 |
. . . . . . . . . . . . . 14
⊢
(lastS‘〈“{1}ℕℕ0”〉)
<
ℤ |
| 75 | 74 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (lastS‘〈“{1}ℕℕ0”〉)
<
ℤ) |
| 76 | 75 | olcd 874 |
. . . . . . . . . . . 12
⊢ (⊤
→ (〈“{1}ℕℕ0”〉 = ∅ ∨
(lastS‘〈“{1}ℕℕ0”〉) <
ℤ)) |
| 77 | 15, 65, 76 | chnccats1 18531 |
. . . . . . . . . . 11
⊢ (⊤
→ (〈“{1}ℕℕ0”〉 ++
〈“ℤ”〉) ∈ ( < Chain
V)) |
| 78 | 13, 77 | eqeltrid 2835 |
. . . . . . . . . 10
⊢ (⊤
→ 〈“{1}ℕℕ0ℤ”〉 ∈ (
<
Chain V)) |
| 79 | | lsws4 14813 |
. . . . . . . . . . . . . 14
⊢ (ℤ
∈ V →
(lastS‘〈“{1}ℕℕ0ℤ”〉) =
ℤ) |
| 80 | 14, 79 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(lastS‘〈“{1}ℕℕ0ℤ”〉)
= ℤ |
| 81 | | nthruc 16161 |
. . . . . . . . . . . . . . . 16
⊢ ((ℕ
⊊ ℤ ∧ ℤ ⊊ ℚ) ∧ (ℚ ⊊
ℝ ∧ ℝ ⊊ ℂ)) |
| 82 | 81 | simpli 483 |
. . . . . . . . . . . . . . 15
⊢ (ℕ
⊊ ℤ ∧ ℤ ⊊ ℚ) |
| 83 | 82 | simpri 485 |
. . . . . . . . . . . . . 14
⊢ ℤ
⊊ ℚ |
| 84 | | psseq1 4037 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ℤ → (𝑥 ⊊ 𝑦 ↔ ℤ ⊊ 𝑦)) |
| 85 | | psseq2 4038 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ℚ → (ℤ
⊊ 𝑦 ↔ ℤ
⊊ ℚ)) |
| 86 | 84, 85, 43 | brabg 5477 |
. . . . . . . . . . . . . . 15
⊢ ((ℤ
∈ V ∧ ℚ ∈ V) → (ℤ < ℚ ↔ ℤ
⊊ ℚ)) |
| 87 | 14, 11, 86 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢ (ℤ
<
ℚ ↔ ℤ ⊊ ℚ) |
| 88 | 83, 87 | mpbir 231 |
. . . . . . . . . . . . 13
⊢ ℤ
<
ℚ |
| 89 | 80, 88 | eqbrtri 5110 |
. . . . . . . . . . . 12
⊢
(lastS‘〈“{1}ℕℕ0ℤ”〉)
<
ℚ |
| 90 | 89 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→
(lastS‘〈“{1}ℕℕ0ℤ”〉)
<
ℚ) |
| 91 | 90 | olcd 874 |
. . . . . . . . . 10
⊢ (⊤
→ (〈“{1}ℕℕ0ℤ”〉 =
∅ ∨
(lastS‘〈“{1}ℕℕ0ℤ”〉)
<
ℚ)) |
| 92 | 12, 78, 91 | chnccats1 18531 |
. . . . . . . . 9
⊢ (⊤
→ (〈“{1}ℕℕ0ℤ”〉 ++
〈“ℚ”〉) ∈ ( < Chain
V)) |
| 93 | 10, 92 | eqeltrid 2835 |
. . . . . . . 8
⊢ (⊤
→ 〈“{1}ℕℕ0ℤℚ”〉
∈ ( < Chain
V)) |
| 94 | | s5cli 14790 |
. . . . . . . . . . . . . 14
⊢
〈“{1}ℕℕ0ℤℚ”〉
∈ Word V |
| 95 | | lsw 14471 |
. . . . . . . . . . . . . 14
⊢
(〈“{1}ℕℕ0ℤℚ”〉
∈ Word V →
(lastS‘〈“{1}ℕℕ0ℤℚ”〉)
=
(〈“{1}ℕℕ0ℤℚ”〉‘((♯‘〈“{1}ℕℕ0ℤℚ”〉)
− 1))) |
| 96 | 94, 95 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(lastS‘〈“{1}ℕℕ0ℤℚ”〉)
=
(〈“{1}ℕℕ0ℤℚ”〉‘((♯‘〈“{1}ℕℕ0ℤℚ”〉)
− 1)) |
| 97 | | s5len 14807 |
. . . . . . . . . . . . . . . 16
⊢
(♯‘〈“{1}ℕℕ0ℤℚ”〉)
= 5 |
| 98 | 97 | oveq1i 7356 |
. . . . . . . . . . . . . . 15
⊢
((♯‘〈“{1}ℕℕ0ℤℚ”〉)
− 1) = (5 − 1) |
| 99 | | 5m1e4 12250 |
. . . . . . . . . . . . . . 15
⊢ (5
− 1) = 4 |
| 100 | 98, 99 | eqtri 2754 |
. . . . . . . . . . . . . 14
⊢
((♯‘〈“{1}ℕℕ0ℤℚ”〉)
− 1) = 4 |
| 101 | 100 | fveq2i 6825 |
. . . . . . . . . . . . 13
⊢
(〈“{1}ℕℕ0ℤℚ”〉‘((♯‘〈“{1}ℕℕ0ℤℚ”〉)
− 1)) = (〈“{1}ℕℕ0ℤℚ”〉‘4) |
| 102 | 96, 101 | eqtri 2754 |
. . . . . . . . . . . 12
⊢
(lastS‘〈“{1}ℕℕ0ℤℚ”〉)
=
(〈“{1}ℕℕ0ℤℚ”〉‘4) |
| 103 | | s4cli 14789 |
. . . . . . . . . . . . . 14
⊢
〈“{1}ℕℕ0ℤ”〉 ∈
Word V |
| 104 | | s4len 14806 |
. . . . . . . . . . . . . 14
⊢
(♯‘〈“{1}ℕℕ0ℤ”〉)
= 4 |
| 105 | 10, 103, 104 | cats1fvn 14765 |
. . . . . . . . . . . . 13
⊢ (ℚ
∈ V →
(〈“{1}ℕℕ0ℤℚ”〉‘4)
= ℚ) |
| 106 | 11, 105 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(〈“{1}ℕℕ0ℤℚ”〉‘4)
= ℚ |
| 107 | 102, 106 | eqtri 2754 |
. . . . . . . . . . 11
⊢
(lastS‘〈“{1}ℕℕ0ℤℚ”〉)
= ℚ |
| 108 | | qssaa 26259 |
. . . . . . . . . . . . . 14
⊢ ℚ
⊆ 𝔸 |
| 109 | | qssre 12857 |
. . . . . . . . . . . . . 14
⊢ ℚ
⊆ ℝ |
| 110 | 108, 109 | ssini 4187 |
. . . . . . . . . . . . 13
⊢ ℚ
⊆ (𝔸 ∩ ℝ) |
| 111 | | 2cn 12200 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℂ |
| 112 | | sqrtcl 15269 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 ∈
ℂ → (√‘2) ∈ ℂ) |
| 113 | 111, 112 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(√‘2) ∈ ℂ |
| 114 | | zsscn 12476 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ℤ
⊆ ℂ |
| 115 | | 1z 12502 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℤ |
| 116 | | 2nn0 12398 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 ∈
ℕ0 |
| 117 | | plypow 26137 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ℤ
⊆ ℂ ∧ 1 ∈ ℤ ∧ 2 ∈ ℕ0)
→ (𝑥 ∈ ℂ
↦ (𝑥↑2)) ∈
(Poly‘ℤ)) |
| 118 | 114, 115,
116, 117 | mp3an 1463 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℂ ↦ (𝑥↑2)) ∈
(Poly‘ℤ) |
| 119 | 118 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⊤
→ (𝑥 ∈ ℂ
↦ (𝑥↑2)) ∈
(Poly‘ℤ)) |
| 120 | | 2z 12504 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 ∈
ℤ |
| 121 | 114, 120 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℤ
⊆ ℂ ∧ 2 ∈ ℤ) |
| 122 | | plyconst 26138 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ℤ
⊆ ℂ ∧ 2 ∈ ℤ) → (ℂ × {2}) ∈
(Poly‘ℤ)) |
| 123 | 121, 122 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⊤
→ (ℂ × {2}) ∈ (Poly‘ℤ)) |
| 124 | | zaddcl 12512 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + 𝑏) ∈ ℤ) |
| 125 | 124 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((⊤ ∧ (𝑎
∈ ℤ ∧ 𝑏
∈ ℤ)) → (𝑎
+ 𝑏) ∈
ℤ) |
| 126 | | zmulcl 12521 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ) |
| 127 | 126 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((⊤ ∧ (𝑎
∈ ℤ ∧ 𝑏
∈ ℤ)) → (𝑎
· 𝑏) ∈
ℤ) |
| 128 | | neg1z 12508 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -1 ∈
ℤ |
| 129 | 128 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⊤
→ -1 ∈ ℤ) |
| 130 | 119, 123,
125, 127, 129 | plysub 26151 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⊤
→ ((𝑥 ∈ ℂ
↦ (𝑥↑2))
∘f − (ℂ × {2})) ∈
(Poly‘ℤ)) |
| 131 | 130 | mptru 1548 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2})) ∈ (Poly‘ℤ) |
| 132 | | 0cn 11104 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℂ |
| 133 | | ovex 7379 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥↑2) ∈
V |
| 134 | 133 | rgenw 3051 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
∀𝑥 ∈
ℂ (𝑥↑2) ∈
V |
| 135 | | nfcv 2894 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Ⅎ𝑥ℂ |
| 136 | 135 | mptfnf 6616 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∀𝑥 ∈
ℂ (𝑥↑2) ∈ V
↔ (𝑥 ∈ ℂ
↦ (𝑥↑2)) Fn
ℂ) |
| 137 | 134, 136 | mpbi 230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ ℂ ↦ (𝑥↑2)) Fn
ℂ |
| 138 | | 2ex 12202 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 2 ∈
V |
| 139 | | fconstmpt 5676 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (ℂ
× {2}) = (𝑎 ∈
ℂ ↦ 2) |
| 140 | 138, 139 | fnmpti 6624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℂ
× {2}) Fn ℂ |
| 141 | | fnfvof 7627 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑥 ∈ ℂ ↦ (𝑥↑2)) Fn ℂ ∧
(ℂ × {2}) Fn ℂ) ∧ (ℂ ∈ V ∧ 0 ∈
ℂ)) → (((𝑥
∈ ℂ ↦ (𝑥↑2)) ∘f −
(ℂ × {2}))‘0) = (((𝑥 ∈ ℂ ↦ (𝑥↑2))‘0) − ((ℂ ×
{2})‘0))) |
| 142 | 137, 140,
141 | mpanl12 702 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((ℂ
∈ V ∧ 0 ∈ ℂ) → (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f −
(ℂ × {2}))‘0) = (((𝑥 ∈ ℂ ↦ (𝑥↑2))‘0) − ((ℂ ×
{2})‘0))) |
| 143 | 2, 132, 142 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2}))‘0) = (((𝑥 ∈ ℂ ↦ (𝑥↑2))‘0) − ((ℂ ×
{2})‘0)) |
| 144 | | oveq1 7353 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 = 0 → (𝑥↑2) = (0↑2)) |
| 145 | | eqid 2731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑥 ∈ ℂ ↦ (𝑥↑2)) = (𝑥 ∈ ℂ ↦ (𝑥↑2)) |
| 146 | | ovex 7379 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(0↑2) ∈ V |
| 147 | 144, 145,
146 | fvmpt 6929 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (0 ∈
ℂ → ((𝑥 ∈
ℂ ↦ (𝑥↑2))‘0) =
(0↑2)) |
| 148 | 132, 147 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑2))‘0) =
(0↑2) |
| 149 | | sq0 14099 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(0↑2) = 0 |
| 150 | 148, 149 | eqtri 2754 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑2))‘0) =
0 |
| 151 | 138 | fvconst2 7138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (0 ∈
ℂ → ((ℂ × {2})‘0) = 2) |
| 152 | 132, 151 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((ℂ
× {2})‘0) = 2 |
| 153 | 150, 152 | oveq12i 7358 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑2))‘0) −
((ℂ × {2})‘0)) = (0 − 2) |
| 154 | 143, 153 | eqtri 2754 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2}))‘0) = (0 − 2) |
| 155 | | df-neg 11347 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ -2 = (0
− 2) |
| 156 | 154, 155 | eqtr4i 2757 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2}))‘0) = -2 |
| 157 | | 2re 12199 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 2 ∈
ℝ |
| 158 | 157 | renegcli 11422 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ -2 ∈
ℝ |
| 159 | | 2pos 12228 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 0 <
2 |
| 160 | | lt0neg2 11624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (2 ∈
ℝ → (0 < 2 ↔ -2 < 0)) |
| 161 | 157, 160 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (0 < 2
↔ -2 < 0) |
| 162 | 159, 161 | mpbi 230 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ -2 <
0 |
| 163 | | ltne 11210 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((-2
∈ ℝ ∧ -2 < 0) → 0 ≠ -2) |
| 164 | 158, 162,
163 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ≠
-2 |
| 165 | 164 | necomi 2982 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ -2 ≠
0 |
| 166 | 156, 165 | eqnetri 2998 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2}))‘0) ≠ 0 |
| 167 | 132, 166 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
ℂ ∧ (((𝑥 ∈
ℂ ↦ (𝑥↑2))
∘f − (ℂ × {2}))‘0) ≠
0) |
| 168 | | ne0p 26139 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∈ ℂ ∧ (((𝑥
∈ ℂ ↦ (𝑥↑2)) ∘f −
(ℂ × {2}))‘0) ≠ 0) → ((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f −
(ℂ × {2})) ≠ 0𝑝) |
| 169 | | nelsn 4616 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2})) ≠ 0𝑝 → ¬ ((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2})) ∈ {0𝑝}) |
| 170 | 167, 168,
169 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ¬
((𝑥 ∈ ℂ ↦
(𝑥↑2))
∘f − (ℂ × {2})) ∈
{0𝑝} |
| 171 | 131, 170 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2})) ∈ (Poly‘ℤ) ∧ ¬ ((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2})) ∈ {0𝑝}) |
| 172 | | eldif 3907 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2})) ∈ ((Poly‘ℤ) ∖
{0𝑝}) ↔ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f −
(ℂ × {2})) ∈ (Poly‘ℤ) ∧ ¬ ((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2})) ∈
{0𝑝})) |
| 173 | 171, 172 | mpbir 231 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2})) ∈ ((Poly‘ℤ) ∖
{0𝑝}) |
| 174 | | fconstmpt 5676 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℂ
× {2}) = (𝑏 ∈
ℂ ↦ 2) |
| 175 | 138, 174 | fnmpti 6624 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℂ
× {2}) Fn ℂ |
| 176 | | fnfvof 7627 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ ℂ ↦ (𝑥↑2)) Fn ℂ ∧
(ℂ × {2}) Fn ℂ) ∧ (ℂ ∈ V ∧
(√‘2) ∈ ℂ)) → (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f −
(ℂ × {2}))‘(√‘2)) = (((𝑥 ∈ ℂ ↦ (𝑥↑2))‘(√‘2)) −
((ℂ × {2})‘(√‘2)))) |
| 177 | 137, 175,
176 | mpanl12 702 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℂ
∈ V ∧ (√‘2) ∈ ℂ) → (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f −
(ℂ × {2}))‘(√‘2)) = (((𝑥 ∈ ℂ ↦ (𝑥↑2))‘(√‘2)) −
((ℂ × {2})‘(√‘2)))) |
| 178 | 2, 113, 177 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2}))‘(√‘2)) = (((𝑥 ∈ ℂ ↦ (𝑥↑2))‘(√‘2)) −
((ℂ × {2})‘(√‘2))) |
| 179 | | oveq1 7353 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = (√‘2) →
(𝑥↑2) =
((√‘2)↑2)) |
| 180 | | ovex 7379 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((√‘2)↑2) ∈ V |
| 181 | 179, 145,
180 | fvmpt 6929 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((√‘2) ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥↑2))‘(√‘2)) =
((√‘2)↑2)) |
| 182 | 113, 181 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑2))‘(√‘2)) =
((√‘2)↑2) |
| 183 | | sqrtth 15272 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (2 ∈
ℂ → ((√‘2)↑2) = 2) |
| 184 | 111, 183 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((√‘2)↑2) = 2 |
| 185 | 182, 184 | eqtri 2754 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℂ ↦ (𝑥↑2))‘(√‘2)) =
2 |
| 186 | 138 | fvconst2 7138 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((√‘2) ∈ ℂ → ((ℂ ×
{2})‘(√‘2)) = 2) |
| 187 | 113, 186 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℂ
× {2})‘(√‘2)) = 2 |
| 188 | 185, 187 | oveq12i 7358 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑2))‘(√‘2)) −
((ℂ × {2})‘(√‘2))) = (2 −
2) |
| 189 | 178, 188 | eqtri 2754 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2}))‘(√‘2)) = (2 −
2) |
| 190 | | subid 11380 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (2 ∈
ℂ → (2 − 2) = 0) |
| 191 | 111, 190 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2
− 2) = 0 |
| 192 | 189, 191 | eqtri 2754 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2}))‘(√‘2)) = 0 |
| 193 | | fveq1 6821 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = ((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f −
(ℂ × {2})) → (𝑎‘(√‘2)) = (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2}))‘(√‘2))) |
| 194 | 193 | eqeq1d 2733 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = ((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f −
(ℂ × {2})) → ((𝑎‘(√‘2)) = 0 ↔ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2}))‘(√‘2)) = 0)) |
| 195 | 194 | rspcev 3572 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2})) ∈ ((Poly‘ℤ) ∖
{0𝑝}) ∧ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f −
(ℂ × {2}))‘(√‘2)) = 0) → ∃𝑎 ∈ ((Poly‘ℤ)
∖ {0𝑝})(𝑎‘(√‘2)) =
0) |
| 196 | | fveq1 6821 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑥 → (𝑎‘(√‘2)) = (𝑥‘(√‘2))) |
| 197 | 196 | eqeq1d 2733 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑥 → ((𝑎‘(√‘2)) = 0 ↔ (𝑥‘(√‘2)) =
0)) |
| 198 | 197 | cbvrexvw 3211 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑎 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑎‘(√‘2)) = 0 ↔
∃𝑥 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑥‘(√‘2)) =
0) |
| 199 | 195, 198 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f
− (ℂ × {2})) ∈ ((Poly‘ℤ) ∖
{0𝑝}) ∧ (((𝑥 ∈ ℂ ↦ (𝑥↑2)) ∘f −
(ℂ × {2}))‘(√‘2)) = 0) → ∃𝑥 ∈ ((Poly‘ℤ)
∖ {0𝑝})(𝑥‘(√‘2)) =
0) |
| 200 | 173, 192,
199 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢
∃𝑥 ∈
((Poly‘ℤ) ∖ {0𝑝})(𝑥‘(√‘2)) =
0 |
| 201 | 113, 200 | pm3.2i 470 |
. . . . . . . . . . . . . . . 16
⊢
((√‘2) ∈ ℂ ∧ ∃𝑥 ∈ ((Poly‘ℤ) ∖
{0𝑝})(𝑥‘(√‘2)) =
0) |
| 202 | | elaa 26251 |
. . . . . . . . . . . . . . . 16
⊢
((√‘2) ∈ 𝔸 ↔ ((√‘2) ∈
ℂ ∧ ∃𝑥
∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑥‘(√‘2)) =
0)) |
| 203 | 201, 202 | mpbir 231 |
. . . . . . . . . . . . . . 15
⊢
(√‘2) ∈ 𝔸 |
| 204 | | sqrt2re 16159 |
. . . . . . . . . . . . . . 15
⊢
(√‘2) ∈ ℝ |
| 205 | 203, 204 | elini 4146 |
. . . . . . . . . . . . . 14
⊢
(√‘2) ∈ (𝔸 ∩ ℝ) |
| 206 | | sqrt2irr 16158 |
. . . . . . . . . . . . . . 15
⊢
(√‘2) ∉ ℚ |
| 207 | | df-nel 3033 |
. . . . . . . . . . . . . . 15
⊢
((√‘2) ∉ ℚ ↔ ¬ (√‘2) ∈
ℚ) |
| 208 | 206, 207 | mpbi 230 |
. . . . . . . . . . . . . 14
⊢ ¬
(√‘2) ∈ ℚ |
| 209 | 205, 208 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢
((√‘2) ∈ (𝔸 ∩ ℝ) ∧ ¬
(√‘2) ∈ ℚ) |
| 210 | | ssnelpss 4061 |
. . . . . . . . . . . . 13
⊢ (ℚ
⊆ (𝔸 ∩ ℝ) → (((√‘2) ∈ (𝔸
∩ ℝ) ∧ ¬ (√‘2) ∈ ℚ) → ℚ
⊊ (𝔸 ∩ ℝ))) |
| 211 | 110, 209,
210 | mp2 9 |
. . . . . . . . . . . 12
⊢ ℚ
⊊ (𝔸 ∩ ℝ) |
| 212 | | psseq1 4037 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ℚ → (𝑥 ⊊ 𝑦 ↔ ℚ ⊊ 𝑦)) |
| 213 | | psseq2 4038 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝔸 ∩ ℝ)
→ (ℚ ⊊ 𝑦
↔ ℚ ⊊ (𝔸 ∩ ℝ))) |
| 214 | 212, 213,
43 | brabg 5477 |
. . . . . . . . . . . . 13
⊢ ((ℚ
∈ V ∧ (𝔸 ∩ ℝ) ∈ V) → (ℚ < (𝔸
∩ ℝ) ↔ ℚ ⊊ (𝔸 ∩
ℝ))) |
| 215 | 11, 8, 214 | mp2an 692 |
. . . . . . . . . . . 12
⊢ (ℚ
<
(𝔸 ∩ ℝ) ↔ ℚ ⊊ (𝔸 ∩
ℝ)) |
| 216 | 211, 215 | mpbir 231 |
. . . . . . . . . . 11
⊢ ℚ
<
(𝔸 ∩ ℝ) |
| 217 | 107, 216 | eqbrtri 5110 |
. . . . . . . . . 10
⊢
(lastS‘〈“{1}ℕℕ0ℤℚ”〉)
< (𝔸
∩ ℝ) |
| 218 | 217 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→
(lastS‘〈“{1}ℕℕ0ℤℚ”〉)
<
(𝔸 ∩ ℝ)) |
| 219 | 218 | olcd 874 |
. . . . . . . 8
⊢ (⊤
→ (〈“{1}ℕℕ0ℤℚ”〉 =
∅ ∨
(lastS‘〈“{1}ℕℕ0ℤℚ”〉)
<
(𝔸 ∩ ℝ))) |
| 220 | 9, 93, 219 | chnccats1 18531 |
. . . . . . 7
⊢ (⊤
→ (〈“{1}ℕℕ0ℤℚ”〉
++ 〈“(𝔸 ∩ ℝ)”〉) ∈ ( < Chain
V)) |
| 221 | 7, 220 | eqeltrid 2835 |
. . . . . 6
⊢ (⊤
→ 〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)”〉 ∈ ( < Chain
V)) |
| 222 | | s6cli 14791 |
. . . . . . . . . . . 12
⊢
〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)”〉 ∈ Word V |
| 223 | | lsw 14471 |
. . . . . . . . . . . 12
⊢
(〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉 ∈ Word V →
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) =
(〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)”〉‘((♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) − 1))) |
| 224 | 222, 223 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) =
(〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)”〉‘((♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) − 1)) |
| 225 | | s6len 14808 |
. . . . . . . . . . . . . 14
⊢
(♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) = 6 |
| 226 | 225 | oveq1i 7356 |
. . . . . . . . . . . . 13
⊢
((♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) − 1) = (6 − 1) |
| 227 | | 6m1e5 12251 |
. . . . . . . . . . . . 13
⊢ (6
− 1) = 5 |
| 228 | 226, 227 | eqtri 2754 |
. . . . . . . . . . . 12
⊢
((♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) − 1) = 5 |
| 229 | 228 | fveq2i 6825 |
. . . . . . . . . . 11
⊢
(〈“{1}ℕℕ0ℤℚ(𝔸
∩
ℝ)”〉‘((♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) − 1)) = (〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉‘5) |
| 230 | 224, 229 | eqtri 2754 |
. . . . . . . . . 10
⊢
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) =
(〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)”〉‘5) |
| 231 | 7, 94, 97 | cats1fvn 14765 |
. . . . . . . . . . 11
⊢
((𝔸 ∩ ℝ) ∈ V →
(〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)”〉‘5) = (𝔸 ∩ ℝ)) |
| 232 | 8, 231 | ax-mp 5 |
. . . . . . . . . 10
⊢
(〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉‘5) = (𝔸 ∩
ℝ) |
| 233 | 230, 232 | eqtri 2754 |
. . . . . . . . 9
⊢
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) = (𝔸 ∩ ℝ) |
| 234 | | inss2 4185 |
. . . . . . . . . . 11
⊢
(𝔸 ∩ ℝ) ⊆ ℝ |
| 235 | | nnuz 12775 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
| 236 | | 1zzd 12503 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ 1 ∈ ℤ) |
| 237 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ) |
| 238 | | ovexd 7381 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ →
(2↑-(!‘𝑘))
∈ V) |
| 239 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑘 → 𝑎 = 𝑘) |
| 240 | 239 | fveq2d 6826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑘 → (!‘𝑎) = (!‘𝑘)) |
| 241 | 240 | negeqd 11354 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑘 → -(!‘𝑎) = -(!‘𝑘)) |
| 242 | 241 | oveq2d 7362 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑘 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑘))) |
| 243 | | eqid 2731 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ ℕ ↦
(2↑-(!‘𝑎))) =
(𝑎 ∈ ℕ ↦
(2↑-(!‘𝑎))) |
| 244 | 242, 243 | fvmptg 6927 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧
(2↑-(!‘𝑘))
∈ V) → ((𝑎 ∈
ℕ ↦ (2↑-(!‘𝑎)))‘𝑘) = (2↑-(!‘𝑘))) |
| 245 | 237, 238,
244 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → ((𝑎 ∈ ℕ ↦
(2↑-(!‘𝑎)))‘𝑘) = (2↑-(!‘𝑘))) |
| 246 | 245 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑎
∈ ℕ ↦ (2↑-(!‘𝑎)))‘𝑘) = (2↑-(!‘𝑘))) |
| 247 | 157 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → 2 ∈
ℝ) |
| 248 | | 2ne0 12229 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ≠
0 |
| 249 | 248 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → 2 ≠
0) |
| 250 | | nnnn0 12388 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
| 251 | 250 | faccld 14191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ →
(!‘𝑘) ∈
ℕ) |
| 252 | | nnz 12489 |
. . . . . . . . . . . . . . . . 17
⊢
((!‘𝑘) ∈
ℕ → (!‘𝑘)
∈ ℤ) |
| 253 | | znegcl 12507 |
. . . . . . . . . . . . . . . . 17
⊢
((!‘𝑘) ∈
ℤ → -(!‘𝑘)
∈ ℤ) |
| 254 | 251, 252,
253 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ →
-(!‘𝑘) ∈
ℤ) |
| 255 | 247, 249,
254 | reexpclzd 14156 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ →
(2↑-(!‘𝑘))
∈ ℝ) |
| 256 | 255 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (2↑-(!‘𝑘)) ∈ ℝ) |
| 257 | | eqid 2731 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈
(ℤ≥‘1) ↦ ((2↑-(!‘1)) · ((1 /
2)↑(𝑛 − 1)))) =
(𝑛 ∈
(ℤ≥‘1) ↦ ((2↑-(!‘1)) · ((1 /
2)↑(𝑛 −
1)))) |
| 258 | 257, 243 | aaliou3lem3 26279 |
. . . . . . . . . . . . . . . 16
⊢ (1 ∈
ℕ → (seq1( + , (𝑎 ∈ ℕ ↦
(2↑-(!‘𝑎))))
∈ dom ⇝ ∧ Σ𝑏 ∈
(ℤ≥‘1)((𝑎 ∈ ℕ ↦
(2↑-(!‘𝑎)))‘𝑏) ∈ ℝ+ ∧
Σ𝑏 ∈
(ℤ≥‘1)((𝑎 ∈ ℕ ↦
(2↑-(!‘𝑎)))‘𝑏) ≤ (2 ·
(2↑-(!‘1))))) |
| 259 | 258 | simp1d 1142 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℕ → seq1( + , (𝑎
∈ ℕ ↦ (2↑-(!‘𝑎)))) ∈ dom ⇝ ) |
| 260 | 27, 259 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ seq1( + , (𝑎 ∈
ℕ ↦ (2↑-(!‘𝑎)))) ∈ dom ⇝ ) |
| 261 | 235, 236,
246, 256, 260 | isumrecl 15672 |
. . . . . . . . . . . . 13
⊢ (⊤
→ Σ𝑘 ∈
ℕ (2↑-(!‘𝑘)) ∈ ℝ) |
| 262 | 261 | mptru 1548 |
. . . . . . . . . . . 12
⊢
Σ𝑘 ∈
ℕ (2↑-(!‘𝑘)) ∈ ℝ |
| 263 | | aaliou3 26286 |
. . . . . . . . . . . . . 14
⊢
Σ𝑘 ∈
ℕ (2↑-(!‘𝑘)) ∉ 𝔸 |
| 264 | | df-nel 3033 |
. . . . . . . . . . . . . 14
⊢
(Σ𝑘 ∈
ℕ (2↑-(!‘𝑘)) ∉ 𝔸 ↔ ¬
Σ𝑘 ∈ ℕ
(2↑-(!‘𝑘))
∈ 𝔸) |
| 265 | 263, 264 | mpbi 230 |
. . . . . . . . . . . . 13
⊢ ¬
Σ𝑘 ∈ ℕ
(2↑-(!‘𝑘))
∈ 𝔸 |
| 266 | | elinel1 4148 |
. . . . . . . . . . . . 13
⊢
(Σ𝑘 ∈
ℕ (2↑-(!‘𝑘)) ∈ (𝔸 ∩ ℝ) →
Σ𝑘 ∈ ℕ
(2↑-(!‘𝑘))
∈ 𝔸) |
| 267 | 265, 266 | mto 197 |
. . . . . . . . . . . 12
⊢ ¬
Σ𝑘 ∈ ℕ
(2↑-(!‘𝑘))
∈ (𝔸 ∩ ℝ) |
| 268 | 262, 267 | pm3.2i 470 |
. . . . . . . . . . 11
⊢
(Σ𝑘 ∈
ℕ (2↑-(!‘𝑘)) ∈ ℝ ∧ ¬ Σ𝑘 ∈ ℕ
(2↑-(!‘𝑘))
∈ (𝔸 ∩ ℝ)) |
| 269 | | ssnelpss 4061 |
. . . . . . . . . . 11
⊢
((𝔸 ∩ ℝ) ⊆ ℝ → ((Σ𝑘 ∈ ℕ
(2↑-(!‘𝑘))
∈ ℝ ∧ ¬ Σ𝑘 ∈ ℕ (2↑-(!‘𝑘)) ∈ (𝔸 ∩
ℝ)) → (𝔸 ∩ ℝ) ⊊ ℝ)) |
| 270 | 234, 268,
269 | mp2 9 |
. . . . . . . . . 10
⊢
(𝔸 ∩ ℝ) ⊊ ℝ |
| 271 | | psseq1 4037 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝔸 ∩ ℝ)
→ (𝑥 ⊊ 𝑦 ↔ (𝔸 ∩
ℝ) ⊊ 𝑦)) |
| 272 | | psseq2 4038 |
. . . . . . . . . . . 12
⊢ (𝑦 = ℝ → ((𝔸
∩ ℝ) ⊊ 𝑦
↔ (𝔸 ∩ ℝ) ⊊ ℝ)) |
| 273 | 271, 272,
43 | brabg 5477 |
. . . . . . . . . . 11
⊢
(((𝔸 ∩ ℝ) ∈ V ∧ ℝ ∈ V) →
((𝔸 ∩ ℝ) < ℝ ↔
(𝔸 ∩ ℝ) ⊊ ℝ)) |
| 274 | 8, 5, 273 | mp2an 692 |
. . . . . . . . . 10
⊢
((𝔸 ∩ ℝ) < ℝ ↔
(𝔸 ∩ ℝ) ⊊ ℝ) |
| 275 | 270, 274 | mpbir 231 |
. . . . . . . . 9
⊢
(𝔸 ∩ ℝ) <
ℝ |
| 276 | 233, 275 | eqbrtri 5110 |
. . . . . . . 8
⊢
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) < ℝ |
| 277 | 276 | a1i 11 |
. . . . . . 7
⊢ (⊤
→
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) <
ℝ) |
| 278 | 277 | olcd 874 |
. . . . . 6
⊢ (⊤
→ (〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉 = ∅ ∨
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉) <
ℝ)) |
| 279 | 6, 221, 278 | chnccats1 18531 |
. . . . 5
⊢ (⊤
→ (〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)”〉 ++ 〈“ℝ”〉) ∈ (
<
Chain V)) |
| 280 | 4, 279 | eqeltrid 2835 |
. . . 4
⊢ (⊤
→ 〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)ℝ”〉 ∈ ( < Chain
V)) |
| 281 | | s7cli 14792 |
. . . . . . . . 9
⊢
〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)ℝ”〉 ∈ Word V |
| 282 | | lsw 14471 |
. . . . . . . . 9
⊢
(〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉 ∈ Word V →
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) =
(〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)ℝ”〉‘((♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) − 1))) |
| 283 | 281, 282 | ax-mp 5 |
. . . . . . . 8
⊢
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) =
(〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)ℝ”〉‘((♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) − 1)) |
| 284 | | s7len 14809 |
. . . . . . . . . . . 12
⊢
(♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) = 7 |
| 285 | 284 | oveq1i 7356 |
. . . . . . . . . . 11
⊢
((♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) − 1) = (7 − 1) |
| 286 | | 7m1e6 12252 |
. . . . . . . . . . 11
⊢ (7
− 1) = 6 |
| 287 | 285, 286 | eqtri 2754 |
. . . . . . . . . 10
⊢
((♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) − 1) = 6 |
| 288 | 287 | fveq2i 6825 |
. . . . . . . . 9
⊢
(〈“{1}ℕℕ0ℤℚ(𝔸
∩
ℝ)ℝ”〉‘((♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) − 1)) = (〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉‘6) |
| 289 | 4, 222, 225 | cats1fvn 14765 |
. . . . . . . . . 10
⊢ (ℝ
∈ V →
(〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)ℝ”〉‘6) = ℝ) |
| 290 | 5, 289 | ax-mp 5 |
. . . . . . . . 9
⊢
(〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉‘6) = ℝ |
| 291 | 288, 290 | eqtri 2754 |
. . . . . . . 8
⊢
(〈“{1}ℕℕ0ℤℚ(𝔸
∩
ℝ)ℝ”〉‘((♯‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) − 1)) = ℝ |
| 292 | 283, 291 | eqtri 2754 |
. . . . . . 7
⊢
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) = ℝ |
| 293 | 81 | simpri 485 |
. . . . . . . . 9
⊢ (ℚ
⊊ ℝ ∧ ℝ ⊊ ℂ) |
| 294 | 293 | simpri 485 |
. . . . . . . 8
⊢ ℝ
⊊ ℂ |
| 295 | | psseq1 4037 |
. . . . . . . . . 10
⊢ (𝑥 = ℝ → (𝑥 ⊊ 𝑦 ↔ ℝ ⊊ 𝑦)) |
| 296 | | psseq2 4038 |
. . . . . . . . . 10
⊢ (𝑦 = ℂ → (ℝ
⊊ 𝑦 ↔ ℝ
⊊ ℂ)) |
| 297 | 295, 296,
43 | brabg 5477 |
. . . . . . . . 9
⊢ ((ℝ
∈ V ∧ ℂ ∈ V) → (ℝ < ℂ ↔ ℝ
⊊ ℂ)) |
| 298 | 5, 2, 297 | mp2an 692 |
. . . . . . . 8
⊢ (ℝ
<
ℂ ↔ ℝ ⊊ ℂ) |
| 299 | 294, 298 | mpbir 231 |
. . . . . . 7
⊢ ℝ
<
ℂ |
| 300 | 292, 299 | eqbrtri 5110 |
. . . . . 6
⊢
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) < ℂ |
| 301 | 300 | a1i 11 |
. . . . 5
⊢ (⊤
→
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) <
ℂ) |
| 302 | 301 | olcd 874 |
. . . 4
⊢ (⊤
→ (〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉 = ∅ ∨
(lastS‘〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉) <
ℂ)) |
| 303 | 3, 280, 302 | chnccats1 18531 |
. . 3
⊢ (⊤
→ (〈“{1}ℕℕ0ℤℚ(𝔸
∩ ℝ)ℝ”〉 ++ 〈“ℂ”〉) ∈
( <
Chain V)) |
| 304 | 1, 303 | eqeltrid 2835 |
. 2
⊢ (⊤
→ 〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)ℝℂ”〉 ∈ ( < Chain
V)) |
| 305 | 304 | mptru 1548 |
1
⊢
〈“{1}ℕℕ0ℤℚ(𝔸 ∩
ℝ)ℝℂ”〉 ∈ ( < Chain
V) |