MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addge01 Structured version   Visualization version   GIF version

Theorem addge01 11648
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
addge01 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))

Proof of Theorem addge01
StepHypRef Expression
1 0re 11136 . . . 4 0 ∈ ℝ
2 leadd2 11607 . . . 4 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐵 ↔ (𝐴 + 0) ≤ (𝐴 + 𝐵)))
31, 2mp3an1 1450 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐵 ↔ (𝐴 + 0) ≤ (𝐴 + 𝐵)))
43ancoms 458 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (𝐴 + 0) ≤ (𝐴 + 𝐵)))
5 recn 11118 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
65addridd 11334 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
76adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 0) = 𝐴)
87breq1d 5105 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 0) ≤ (𝐴 + 𝐵) ↔ 𝐴 ≤ (𝐴 + 𝐵)))
94, 8bitrd 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  (class class class)co 7353  cr 11027  0cc0 11028   + caddc 11031  cle 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174
This theorem is referenced by:  addge02  11649  subge02  11654  addge01d  11726  nn0addge1  12448  elfzmlbp  13560  fzoun  13617  flbi2  13739  hashdom  14304  atanlogaddlem  26839  axsegconlem7  28886  axsegconlem10  28889  eucrctshift  30205  cdj1i  32395  cdj3lem2b  32399  sqrtpwpw2p  47523
  Copyright terms: Public domain W3C validator