MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoun Structured version   Visualization version   GIF version

Theorem fzoun 13058
Description: A half-open integer range as union of two half-open integer ranges. (Contributed by AV, 23-Apr-2022.)
Assertion
Ref Expression
fzoun ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶))))

Proof of Theorem fzoun
StepHypRef Expression
1 eluzel2 12227 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
21adantr 483 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈ ℤ)
3 eluzelz 12232 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
4 nn0z 11984 . . . . 5 (𝐶 ∈ ℕ0𝐶 ∈ ℤ)
5 zaddcl 12001 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ ℤ)
63, 4, 5syl2an 597 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐵 + 𝐶) ∈ ℤ)
73adantr 483 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈ ℤ)
82, 6, 73jca 1124 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴 ∈ ℤ ∧ (𝐵 + 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ))
9 eluzle 12235 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴𝐵)
109adantr 483 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐴𝐵)
11 nn0ge0 11901 . . . . . 6 (𝐶 ∈ ℕ0 → 0 ≤ 𝐶)
1211adantl 484 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 0 ≤ 𝐶)
13 eluzelre 12233 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
14 nn0re 11885 . . . . . 6 (𝐶 ∈ ℕ0𝐶 ∈ ℝ)
15 addge01 11128 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ 𝐶𝐵 ≤ (𝐵 + 𝐶)))
1613, 14, 15syl2an 597 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (0 ≤ 𝐶𝐵 ≤ (𝐵 + 𝐶)))
1712, 16mpbid 234 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐵 ≤ (𝐵 + 𝐶))
1810, 17jca 514 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴𝐵𝐵 ≤ (𝐵 + 𝐶)))
19 elfz2 12883 . . 3 (𝐵 ∈ (𝐴...(𝐵 + 𝐶)) ↔ ((𝐴 ∈ ℤ ∧ (𝐵 + 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴𝐵𝐵 ≤ (𝐵 + 𝐶))))
208, 18, 19sylanbrc 585 . 2 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈ (𝐴...(𝐵 + 𝐶)))
21 fzosplit 13054 . 2 (𝐵 ∈ (𝐴...(𝐵 + 𝐶)) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶))))
2220, 21syl 17 1 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cun 3911   class class class wbr 5042  cfv 6331  (class class class)co 7133  cr 10514  0cc0 10515   + caddc 10518  cle 10654  0cn0 11876  cz 11960  cuz 12222  ...cfz 12876  ..^cfzo 13017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-n0 11877  df-z 11961  df-uz 12223  df-fz 12877  df-fzo 13018
This theorem is referenced by:  clwwlkccatlem  27753
  Copyright terms: Public domain W3C validator