MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoun Structured version   Visualization version   GIF version

Theorem fzoun 12800
Description: A half-open integer range as union of two half-open integer ranges. (Contributed by AV, 23-Apr-2022.)
Assertion
Ref Expression
fzoun ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶))))

Proof of Theorem fzoun
StepHypRef Expression
1 eluzel2 11973 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
21adantr 474 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈ ℤ)
3 eluzelz 11978 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
4 nn0z 11728 . . . . 5 (𝐶 ∈ ℕ0𝐶 ∈ ℤ)
5 zaddcl 11745 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ ℤ)
63, 4, 5syl2an 591 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐵 + 𝐶) ∈ ℤ)
73adantr 474 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈ ℤ)
82, 6, 73jca 1164 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴 ∈ ℤ ∧ (𝐵 + 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ))
9 eluzle 11981 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴𝐵)
109adantr 474 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐴𝐵)
11 nn0ge0 11645 . . . . . 6 (𝐶 ∈ ℕ0 → 0 ≤ 𝐶)
1211adantl 475 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 0 ≤ 𝐶)
13 eluzelre 11979 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
14 nn0re 11628 . . . . . 6 (𝐶 ∈ ℕ0𝐶 ∈ ℝ)
15 addge01 10862 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ 𝐶𝐵 ≤ (𝐵 + 𝐶)))
1613, 14, 15syl2an 591 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (0 ≤ 𝐶𝐵 ≤ (𝐵 + 𝐶)))
1712, 16mpbid 224 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐵 ≤ (𝐵 + 𝐶))
1810, 17jca 509 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴𝐵𝐵 ≤ (𝐵 + 𝐶)))
19 elfz2 12626 . . 3 (𝐵 ∈ (𝐴...(𝐵 + 𝐶)) ↔ ((𝐴 ∈ ℤ ∧ (𝐵 + 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴𝐵𝐵 ≤ (𝐵 + 𝐶))))
208, 18, 19sylanbrc 580 . 2 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈ (𝐴...(𝐵 + 𝐶)))
21 fzosplit 12796 . 2 (𝐵 ∈ (𝐴...(𝐵 + 𝐶)) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶))))
2220, 21syl 17 1 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  cun 3796   class class class wbr 4873  cfv 6123  (class class class)co 6905  cr 10251  0cc0 10252   + caddc 10255  cle 10392  0cn0 11618  cz 11704  cuz 11968  ...cfz 12619  ..^cfzo 12760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761
This theorem is referenced by:  clwwlkccatlem  27318
  Copyright terms: Public domain W3C validator