MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoun Structured version   Visualization version   GIF version

Theorem fzoun 13062
Description: A half-open integer range as union of two half-open integer ranges. (Contributed by AV, 23-Apr-2022.)
Assertion
Ref Expression
fzoun ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶))))

Proof of Theorem fzoun
StepHypRef Expression
1 eluzel2 12236 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
21adantr 481 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈ ℤ)
3 eluzelz 12241 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
4 nn0z 11993 . . . . 5 (𝐶 ∈ ℕ0𝐶 ∈ ℤ)
5 zaddcl 12010 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 + 𝐶) ∈ ℤ)
63, 4, 5syl2an 595 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐵 + 𝐶) ∈ ℤ)
73adantr 481 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈ ℤ)
82, 6, 73jca 1120 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴 ∈ ℤ ∧ (𝐵 + 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ))
9 eluzle 12244 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴𝐵)
109adantr 481 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐴𝐵)
11 nn0ge0 11910 . . . . . 6 (𝐶 ∈ ℕ0 → 0 ≤ 𝐶)
1211adantl 482 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 0 ≤ 𝐶)
13 eluzelre 12242 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
14 nn0re 11894 . . . . . 6 (𝐶 ∈ ℕ0𝐶 ∈ ℝ)
15 addge01 11138 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ 𝐶𝐵 ≤ (𝐵 + 𝐶)))
1613, 14, 15syl2an 595 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (0 ≤ 𝐶𝐵 ≤ (𝐵 + 𝐶)))
1712, 16mpbid 233 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐵 ≤ (𝐵 + 𝐶))
1810, 17jca 512 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴𝐵𝐵 ≤ (𝐵 + 𝐶)))
19 elfz2 12887 . . 3 (𝐵 ∈ (𝐴...(𝐵 + 𝐶)) ↔ ((𝐴 ∈ ℤ ∧ (𝐵 + 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴𝐵𝐵 ≤ (𝐵 + 𝐶))))
208, 18, 19sylanbrc 583 . 2 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈ (𝐴...(𝐵 + 𝐶)))
21 fzosplit 13058 . 2 (𝐵 ∈ (𝐴...(𝐵 + 𝐶)) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶))))
2220, 21syl 17 1 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ ℕ0) → (𝐴..^(𝐵 + 𝐶)) = ((𝐴..^𝐵) ∪ (𝐵..^(𝐵 + 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  cun 3931   class class class wbr 5057  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525   + caddc 10528  cle 10664  0cn0 11885  cz 11969  cuz 12231  ...cfz 12880  ..^cfzo 13021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022
This theorem is referenced by:  clwwlkccatlem  27694
  Copyright terms: Public domain W3C validator