Proof of Theorem atanlogaddlem
Step | Hyp | Ref
| Expression |
1 | | 0re 10977 |
. . . 4
⊢ 0 ∈
ℝ |
2 | | atandm2 26027 |
. . . . . 6
⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 −
(i · 𝐴)) ≠ 0
∧ (1 + (i · 𝐴))
≠ 0)) |
3 | 2 | simp1bi 1144 |
. . . . 5
⊢ (𝐴 ∈ dom arctan → 𝐴 ∈
ℂ) |
4 | 3 | recld 14905 |
. . . 4
⊢ (𝐴 ∈ dom arctan →
(ℜ‘𝐴) ∈
ℝ) |
5 | | leloe 11061 |
. . . 4
⊢ ((0
∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 ≤
(ℜ‘𝐴) ↔ (0
< (ℜ‘𝐴) ∨
0 = (ℜ‘𝐴)))) |
6 | 1, 4, 5 | sylancr 587 |
. . 3
⊢ (𝐴 ∈ dom arctan → (0
≤ (ℜ‘𝐴)
↔ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴)))) |
7 | 6 | biimpa 477 |
. 2
⊢ ((𝐴 ∈ dom arctan ∧ 0 ≤
(ℜ‘𝐴)) → (0
< (ℜ‘𝐴) ∨
0 = (ℜ‘𝐴))) |
8 | | ax-1cn 10929 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
9 | | ax-icn 10930 |
. . . . . . . . 9
⊢ i ∈
ℂ |
10 | | mulcl 10955 |
. . . . . . . . 9
⊢ ((i
∈ ℂ ∧ 𝐴
∈ ℂ) → (i · 𝐴) ∈ ℂ) |
11 | 9, 3, 10 | sylancr 587 |
. . . . . . . 8
⊢ (𝐴 ∈ dom arctan → (i
· 𝐴) ∈
ℂ) |
12 | | addcl 10953 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i ·
𝐴)) ∈
ℂ) |
13 | 8, 11, 12 | sylancr 587 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan → (1 +
(i · 𝐴)) ∈
ℂ) |
14 | 2 | simp3bi 1146 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan → (1 +
(i · 𝐴)) ≠
0) |
15 | 13, 14 | logcld 25726 |
. . . . . 6
⊢ (𝐴 ∈ dom arctan →
(log‘(1 + (i · 𝐴))) ∈ ℂ) |
16 | | subcl 11220 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i
· 𝐴)) ∈
ℂ) |
17 | 8, 11, 16 | sylancr 587 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan → (1
− (i · 𝐴))
∈ ℂ) |
18 | 2 | simp2bi 1145 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan → (1
− (i · 𝐴))
≠ 0) |
19 | 17, 18 | logcld 25726 |
. . . . . 6
⊢ (𝐴 ∈ dom arctan →
(log‘(1 − (i · 𝐴))) ∈ ℂ) |
20 | 15, 19 | addcld 10994 |
. . . . 5
⊢ (𝐴 ∈ dom arctan →
((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) ∈
ℂ) |
21 | 20 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) ∈
ℂ) |
22 | | pire 25615 |
. . . . . . . 8
⊢ π
∈ ℝ |
23 | 22 | renegcli 11282 |
. . . . . . 7
⊢ -π
∈ ℝ |
24 | 23 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
-π ∈ ℝ) |
25 | 19 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(log‘(1 − (i · 𝐴))) ∈ ℂ) |
26 | 25 | imcld 14906 |
. . . . . 6
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘(1 − (i · 𝐴)))) ∈ ℝ) |
27 | 15 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(log‘(1 + (i · 𝐴))) ∈ ℂ) |
28 | 27 | imcld 14906 |
. . . . . . 7
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘(1 + (i · 𝐴)))) ∈ ℝ) |
29 | 28, 26 | readdcld 11004 |
. . . . . 6
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 −
(i · 𝐴))))) ∈
ℝ) |
30 | 17 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) → (1
− (i · 𝐴))
∈ ℂ) |
31 | | im1 14866 |
. . . . . . . . . . . . 13
⊢
(ℑ‘1) = 0 |
32 | 31 | oveq1i 7285 |
. . . . . . . . . . . 12
⊢
((ℑ‘1) − (ℑ‘(i · 𝐴))) = (0 − (ℑ‘(i ·
𝐴))) |
33 | | df-neg 11208 |
. . . . . . . . . . . 12
⊢
-(ℑ‘(i · 𝐴)) = (0 − (ℑ‘(i ·
𝐴))) |
34 | 32, 33 | eqtr4i 2769 |
. . . . . . . . . . 11
⊢
((ℑ‘1) − (ℑ‘(i · 𝐴))) = -(ℑ‘(i · 𝐴)) |
35 | 11 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) → (i
· 𝐴) ∈
ℂ) |
36 | | imsub 14846 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1
− (i · 𝐴))) =
((ℑ‘1) − (ℑ‘(i · 𝐴)))) |
37 | 8, 35, 36 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) −
(ℑ‘(i · 𝐴)))) |
38 | 3 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
𝐴 ∈
ℂ) |
39 | | reim 14820 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) =
(ℑ‘(i · 𝐴))) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘𝐴) =
(ℑ‘(i · 𝐴))) |
41 | 40 | negeqd 11215 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
-(ℜ‘𝐴) =
-(ℑ‘(i · 𝐴))) |
42 | 34, 37, 41 | 3eqtr4a 2804 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(1 − (i · 𝐴))) = -(ℜ‘𝐴)) |
43 | 4 | lt0neg2d 11545 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ dom arctan → (0
< (ℜ‘𝐴)
↔ -(ℜ‘𝐴)
< 0)) |
44 | 43 | biimpa 477 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
-(ℜ‘𝐴) <
0) |
45 | 42, 44 | eqbrtrd 5096 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(1 − (i · 𝐴))) < 0) |
46 | | argimlt0 25768 |
. . . . . . . . 9
⊢ (((1
− (i · 𝐴))
∈ ℂ ∧ (ℑ‘(1 − (i · 𝐴))) < 0) →
(ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0)) |
47 | 30, 45, 46 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0)) |
48 | | eliooord 13138 |
. . . . . . . 8
⊢
((ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0) → (-π <
(ℑ‘(log‘(1 − (i · 𝐴)))) ∧ (ℑ‘(log‘(1
− (i · 𝐴))))
< 0)) |
49 | 47, 48 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(-π < (ℑ‘(log‘(1 − (i · 𝐴)))) ∧ (ℑ‘(log‘(1
− (i · 𝐴))))
< 0)) |
50 | 49 | simpld 495 |
. . . . . 6
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
-π < (ℑ‘(log‘(1 − (i · 𝐴))))) |
51 | 13 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) → (1
+ (i · 𝐴)) ∈
ℂ) |
52 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) → 0
< (ℜ‘𝐴)) |
53 | | imadd 14845 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 +
(i · 𝐴))) =
((ℑ‘1) + (ℑ‘(i · 𝐴)))) |
54 | 8, 35, 53 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i
· 𝐴)))) |
55 | 40 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
((ℑ‘1) + (ℜ‘𝐴)) = ((ℑ‘1) + (ℑ‘(i
· 𝐴)))) |
56 | 31 | oveq1i 7285 |
. . . . . . . . . . . . 13
⊢
((ℑ‘1) + (ℜ‘𝐴)) = (0 + (ℜ‘𝐴)) |
57 | 38 | recld 14905 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘𝐴) ∈
ℝ) |
58 | 57 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℜ‘𝐴) ∈
ℂ) |
59 | 58 | addid2d 11176 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) → (0
+ (ℜ‘𝐴)) =
(ℜ‘𝐴)) |
60 | 56, 59 | eqtrid 2790 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
((ℑ‘1) + (ℜ‘𝐴)) = (ℜ‘𝐴)) |
61 | 54, 55, 60 | 3eqtr2d 2784 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(1 + (i · 𝐴))) = (ℜ‘𝐴)) |
62 | 52, 61 | breqtrrd 5102 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) → 0
< (ℑ‘(1 + (i · 𝐴)))) |
63 | | argimgt0 25767 |
. . . . . . . . . 10
⊢ (((1 + (i
· 𝐴)) ∈ ℂ
∧ 0 < (ℑ‘(1 + (i · 𝐴)))) → (ℑ‘(log‘(1 +
(i · 𝐴)))) ∈
(0(,)π)) |
64 | 51, 62, 63 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π)) |
65 | | eliooord 13138 |
. . . . . . . . 9
⊢
((ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π) → (0 <
(ℑ‘(log‘(1 + (i · 𝐴)))) ∧ (ℑ‘(log‘(1 + (i
· 𝐴)))) <
π)) |
66 | 64, 65 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) → (0
< (ℑ‘(log‘(1 + (i · 𝐴)))) ∧ (ℑ‘(log‘(1 + (i
· 𝐴)))) <
π)) |
67 | 66 | simpld 495 |
. . . . . . 7
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) → 0
< (ℑ‘(log‘(1 + (i · 𝐴))))) |
68 | 28, 26 | ltaddpos2d 11560 |
. . . . . . 7
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) → (0
< (ℑ‘(log‘(1 + (i · 𝐴)))) ↔ (ℑ‘(log‘(1
− (i · 𝐴))))
< ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 −
(i · 𝐴))))))) |
69 | 67, 68 | mpbid 231 |
. . . . . 6
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘(1 − (i · 𝐴)))) < ((ℑ‘(log‘(1 + (i
· 𝐴)))) +
(ℑ‘(log‘(1 − (i · 𝐴)))))) |
70 | 24, 26, 29, 50, 69 | lttrd 11136 |
. . . . 5
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
-π < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 −
(i · 𝐴)))))) |
71 | 27, 25 | imaddd 14926 |
. . . . 5
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴))))) =
((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 −
(i · 𝐴)))))) |
72 | 70, 71 | breqtrrd 5102 |
. . . 4
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
-π < (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))))) |
73 | 22 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
π ∈ ℝ) |
74 | | 0red 10978 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) → 0
∈ ℝ) |
75 | 49 | simprd 496 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘(1 − (i · 𝐴)))) < 0) |
76 | 26, 74, 28, 75 | ltadd2dd 11134 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 −
(i · 𝐴))))) <
((ℑ‘(log‘(1 + (i · 𝐴)))) + 0)) |
77 | 28 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘(1 + (i · 𝐴)))) ∈ ℂ) |
78 | 77 | addid1d 11175 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
((ℑ‘(log‘(1 + (i · 𝐴)))) + 0) = (ℑ‘(log‘(1 +
(i · 𝐴))))) |
79 | 76, 78 | breqtrd 5100 |
. . . . . . 7
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 −
(i · 𝐴))))) <
(ℑ‘(log‘(1 + (i · 𝐴))))) |
80 | 66 | simprd 496 |
. . . . . . 7
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘(log‘(1 + (i · 𝐴)))) < π) |
81 | 29, 28, 73, 79, 80 | lttrd 11136 |
. . . . . 6
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 −
(i · 𝐴))))) <
π) |
82 | 29, 73, 81 | ltled 11123 |
. . . . 5
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 −
(i · 𝐴))))) ≤
π) |
83 | 71, 82 | eqbrtrd 5096 |
. . . 4
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
(ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴))))) ≤
π) |
84 | | ellogrn 25715 |
. . . 4
⊢
(((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) ∈ ran log ↔
(((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) ∈ ℂ ∧
-π < (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴))))) ∧
(ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴))))) ≤
π)) |
85 | 21, 72, 83, 84 | syl3anbrc 1342 |
. . 3
⊢ ((𝐴 ∈ dom arctan ∧ 0 <
(ℜ‘𝐴)) →
((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) ∈ ran
log) |
86 | | 0red 10978 |
. . . 4
⊢ ((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) → 0
∈ ℝ) |
87 | 11 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) → (i
· 𝐴) ∈
ℂ) |
88 | | simpr 485 |
. . . . . 6
⊢ ((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) → 0
= (ℜ‘𝐴)) |
89 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) →
𝐴 ∈
ℂ) |
90 | 89, 39 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) →
(ℜ‘𝐴) =
(ℑ‘(i · 𝐴))) |
91 | 88, 90 | eqtr2d 2779 |
. . . . 5
⊢ ((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) →
(ℑ‘(i · 𝐴)) = 0) |
92 | 87, 91 | reim0bd 14911 |
. . . 4
⊢ ((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) → (i
· 𝐴) ∈
ℝ) |
93 | 15, 19 | addcomd 11177 |
. . . . . 6
⊢ (𝐴 ∈ dom arctan →
((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) = ((log‘(1
− (i · 𝐴))) +
(log‘(1 + (i · 𝐴))))) |
94 | 93 | ad2antrr 723 |
. . . . 5
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) = ((log‘(1
− (i · 𝐴))) +
(log‘(1 + (i · 𝐴))))) |
95 | | logrncl 25723 |
. . . . . . . 8
⊢ (((1
− (i · 𝐴))
∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (log‘(1 − (i
· 𝐴))) ∈ ran
log) |
96 | 17, 18, 95 | syl2anc 584 |
. . . . . . 7
⊢ (𝐴 ∈ dom arctan →
(log‘(1 − (i · 𝐴))) ∈ ran log) |
97 | 96 | ad2antrr 723 |
. . . . . 6
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
(log‘(1 − (i · 𝐴))) ∈ ran log) |
98 | | 1re 10975 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
99 | 92 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
(i · 𝐴) ∈
ℝ) |
100 | | readdcl 10954 |
. . . . . . . . 9
⊢ ((1
∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (1 + (i ·
𝐴)) ∈
ℝ) |
101 | 98, 99, 100 | sylancr 587 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
(1 + (i · 𝐴)) ∈
ℝ) |
102 | | 0red 10978 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
0 ∈ ℝ) |
103 | | 1red 10976 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
1 ∈ ℝ) |
104 | | 0lt1 11497 |
. . . . . . . . . 10
⊢ 0 <
1 |
105 | 104 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
0 < 1) |
106 | | addge01 11485 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (0 ≤ (i ·
𝐴) ↔ 1 ≤ (1 + (i
· 𝐴)))) |
107 | 98, 92, 106 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) → (0
≤ (i · 𝐴) ↔
1 ≤ (1 + (i · 𝐴)))) |
108 | 107 | biimpa 477 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
1 ≤ (1 + (i · 𝐴))) |
109 | 102, 103,
101, 105, 108 | ltletrd 11135 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
0 < (1 + (i · 𝐴))) |
110 | 101, 109 | elrpd 12769 |
. . . . . . 7
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
(1 + (i · 𝐴)) ∈
ℝ+) |
111 | 110 | relogcld 25778 |
. . . . . 6
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
(log‘(1 + (i · 𝐴))) ∈ ℝ) |
112 | | logrnaddcl 25730 |
. . . . . 6
⊢
(((log‘(1 − (i · 𝐴))) ∈ ran log ∧ (log‘(1 + (i
· 𝐴))) ∈
ℝ) → ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) ∈ ran
log) |
113 | 97, 111, 112 | syl2anc 584 |
. . . . 5
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) ∈ ran
log) |
114 | 94, 113 | eqeltrd 2839 |
. . . 4
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ 0
≤ (i · 𝐴)) →
((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) ∈ ran
log) |
115 | | logrncl 25723 |
. . . . . . 7
⊢ (((1 + (i
· 𝐴)) ∈ ℂ
∧ (1 + (i · 𝐴))
≠ 0) → (log‘(1 + (i · 𝐴))) ∈ ran log) |
116 | 13, 14, 115 | syl2anc 584 |
. . . . . 6
⊢ (𝐴 ∈ dom arctan →
(log‘(1 + (i · 𝐴))) ∈ ran log) |
117 | 116 | ad2antrr 723 |
. . . . 5
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ (i
· 𝐴) ≤ 0) →
(log‘(1 + (i · 𝐴))) ∈ ran log) |
118 | 92 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ (i
· 𝐴) ≤ 0) →
(i · 𝐴) ∈
ℝ) |
119 | | resubcl 11285 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (1 − (i
· 𝐴)) ∈
ℝ) |
120 | 98, 118, 119 | sylancr 587 |
. . . . . . 7
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ (i
· 𝐴) ≤ 0) →
(1 − (i · 𝐴))
∈ ℝ) |
121 | | 0red 10978 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ (i
· 𝐴) ≤ 0) →
0 ∈ ℝ) |
122 | | 1red 10976 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ (i
· 𝐴) ≤ 0) →
1 ∈ ℝ) |
123 | 104 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ (i
· 𝐴) ≤ 0) →
0 < 1) |
124 | | 1m0e1 12094 |
. . . . . . . . 9
⊢ (1
− 0) = 1 |
125 | | 1red 10976 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) → 1
∈ ℝ) |
126 | 92, 86, 125 | lesub2d 11583 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) →
((i · 𝐴) ≤ 0
↔ (1 − 0) ≤ (1 − (i · 𝐴)))) |
127 | 126 | biimpa 477 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ (i
· 𝐴) ≤ 0) →
(1 − 0) ≤ (1 − (i · 𝐴))) |
128 | 124, 127 | eqbrtrrid 5110 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ (i
· 𝐴) ≤ 0) →
1 ≤ (1 − (i · 𝐴))) |
129 | 121, 122,
120, 123, 128 | ltletrd 11135 |
. . . . . . 7
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ (i
· 𝐴) ≤ 0) →
0 < (1 − (i · 𝐴))) |
130 | 120, 129 | elrpd 12769 |
. . . . . 6
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ (i
· 𝐴) ≤ 0) →
(1 − (i · 𝐴))
∈ ℝ+) |
131 | 130 | relogcld 25778 |
. . . . 5
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ (i
· 𝐴) ≤ 0) →
(log‘(1 − (i · 𝐴))) ∈ ℝ) |
132 | | logrnaddcl 25730 |
. . . . 5
⊢
(((log‘(1 + (i · 𝐴))) ∈ ran log ∧ (log‘(1
− (i · 𝐴)))
∈ ℝ) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) ∈ ran
log) |
133 | 117, 131,
132 | syl2anc 584 |
. . . 4
⊢ (((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) ∧ (i
· 𝐴) ≤ 0) →
((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) ∈ ran
log) |
134 | 86, 92, 114, 133 | lecasei 11081 |
. . 3
⊢ ((𝐴 ∈ dom arctan ∧ 0 =
(ℜ‘𝐴)) →
((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) ∈ ran
log) |
135 | 85, 134 | jaodan 955 |
. 2
⊢ ((𝐴 ∈ dom arctan ∧ (0 <
(ℜ‘𝐴) ∨ 0 =
(ℜ‘𝐴))) →
((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) ∈ ran
log) |
136 | 7, 135 | syldan 591 |
1
⊢ ((𝐴 ∈ dom arctan ∧ 0 ≤
(ℜ‘𝐴)) →
((log‘(1 + (i · 𝐴))) + (log‘(1 − (i ·
𝐴)))) ∈ ran
log) |