MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogaddlem Structured version   Visualization version   GIF version

Theorem atanlogaddlem 26845
Description: Lemma for atanlogadd 26846. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
atanlogaddlem ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)

Proof of Theorem atanlogaddlem
StepHypRef Expression
1 0re 11109 . . . 4 0 ∈ ℝ
2 atandm2 26809 . . . . . 6 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
32simp1bi 1145 . . . . 5 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
43recld 15096 . . . 4 (𝐴 ∈ dom arctan → (ℜ‘𝐴) ∈ ℝ)
5 leloe 11194 . . . 4 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 ≤ (ℜ‘𝐴) ↔ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))))
61, 4, 5sylancr 587 . . 3 (𝐴 ∈ dom arctan → (0 ≤ (ℜ‘𝐴) ↔ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))))
76biimpa 476 . 2 ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴)))
8 ax-1cn 11059 . . . . . . . 8 1 ∈ ℂ
9 ax-icn 11060 . . . . . . . . 9 i ∈ ℂ
10 mulcl 11085 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
119, 3, 10sylancr 587 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
12 addcl 11083 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
138, 11, 12sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
142simp3bi 1147 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
1513, 14logcld 26501 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
16 subcl 11354 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
178, 11, 16sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
182simp2bi 1146 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
1917, 18logcld 26501 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2015, 19addcld 11126 . . . . 5 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ)
2120adantr 480 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ)
22 pire 26388 . . . . . . . 8 π ∈ ℝ
2322renegcli 11417 . . . . . . 7 -π ∈ ℝ
2423a1i 11 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ∈ ℝ)
2519adantr 480 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2625imcld 15097 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ ℝ)
2715adantr 480 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
2827imcld 15097 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ ℝ)
2928, 26readdcld 11136 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) ∈ ℝ)
3017adantr 480 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ∈ ℂ)
31 im1 15057 . . . . . . . . . . . . 13 (ℑ‘1) = 0
3231oveq1i 7351 . . . . . . . . . . . 12 ((ℑ‘1) − (ℑ‘(i · 𝐴))) = (0 − (ℑ‘(i · 𝐴)))
33 df-neg 11342 . . . . . . . . . . . 12 -(ℑ‘(i · 𝐴)) = (0 − (ℑ‘(i · 𝐴)))
3432, 33eqtr4i 2757 . . . . . . . . . . 11 ((ℑ‘1) − (ℑ‘(i · 𝐴))) = -(ℑ‘(i · 𝐴))
3511adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
36 imsub 15037 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
378, 35, 36sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
383adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
39 reim 15011 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
4038, 39syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
4140negeqd 11349 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℜ‘𝐴) = -(ℑ‘(i · 𝐴)))
4234, 37, 413eqtr4a 2792 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) = -(ℜ‘𝐴))
434lt0neg2d 11682 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (0 < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < 0))
4443biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℜ‘𝐴) < 0)
4542, 44eqbrtrd 5108 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) < 0)
46 argimlt0 26544 . . . . . . . . 9 (((1 − (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 − (i · 𝐴))) < 0) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0))
4730, 45, 46syl2anc 584 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0))
48 eliooord 13300 . . . . . . . 8 ((ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0) → (-π < (ℑ‘(log‘(1 − (i · 𝐴)))) ∧ (ℑ‘(log‘(1 − (i · 𝐴)))) < 0))
4947, 48syl 17 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(1 − (i · 𝐴)))) ∧ (ℑ‘(log‘(1 − (i · 𝐴)))) < 0))
5049simpld 494 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘(1 − (i · 𝐴)))))
5113adantr 480 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ∈ ℂ)
52 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
53 imadd 15036 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
548, 35, 53sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
5540oveq2d 7357 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘1) + (ℜ‘𝐴)) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
5631oveq1i 7351 . . . . . . . . . . . . 13 ((ℑ‘1) + (ℜ‘𝐴)) = (0 + (ℜ‘𝐴))
5738recld 15096 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
5857recnd 11135 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℂ)
5958addlidd 11309 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 + (ℜ‘𝐴)) = (ℜ‘𝐴))
6056, 59eqtrid 2778 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘1) + (ℜ‘𝐴)) = (ℜ‘𝐴))
6154, 55, 603eqtr2d 2772 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 + (i · 𝐴))) = (ℜ‘𝐴))
6252, 61breqtrrd 5114 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(1 + (i · 𝐴))))
63 argimgt0 26543 . . . . . . . . . 10 (((1 + (i · 𝐴)) ∈ ℂ ∧ 0 < (ℑ‘(1 + (i · 𝐴)))) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π))
6451, 62, 63syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π))
65 eliooord 13300 . . . . . . . . 9 ((ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ∧ (ℑ‘(log‘(1 + (i · 𝐴)))) < π))
6664, 65syl 17 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ∧ (ℑ‘(log‘(1 + (i · 𝐴)))) < π))
6766simpld 494 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(log‘(1 + (i · 𝐴)))))
6828, 26ltaddpos2d 11697 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ↔ (ℑ‘(log‘(1 − (i · 𝐴)))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴)))))))
6967, 68mpbid 232 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7024, 26, 29, 50, 69lttrd 11269 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7127, 25imaddd 15117 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7270, 71breqtrrd 5114 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))))
7322a1i 11 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → π ∈ ℝ)
74 0red 11110 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
7549simprd 495 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) < 0)
7626, 74, 28, 75ltadd2dd 11267 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + 0))
7728recnd 11135 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ ℂ)
7877addridd 11308 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + 0) = (ℑ‘(log‘(1 + (i · 𝐴)))))
7976, 78breqtrd 5112 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < (ℑ‘(log‘(1 + (i · 𝐴)))))
8066simprd 495 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) < π)
8129, 28, 73, 79, 80lttrd 11269 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < π)
8229, 73, 81ltled 11256 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) ≤ π)
8371, 82eqbrtrd 5108 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ≤ π)
84 ellogrn 26490 . . . 4 (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log ↔ (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ ∧ -π < (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ≤ π))
8521, 72, 83, 84syl3anbrc 1344 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
86 0red 11110 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 0 ∈ ℝ)
8711adantr 480 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
88 simpr 484 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 0 = (ℜ‘𝐴))
893adantr 480 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
9089, 39syl 17 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
9188, 90eqtr2d 2767 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (ℑ‘(i · 𝐴)) = 0)
9287, 91reim0bd 15102 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (i · 𝐴) ∈ ℝ)
9315, 19addcomd 11310 . . . . . 6 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
9493ad2antrr 726 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
95 logrncl 26498 . . . . . . . 8 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (log‘(1 − (i · 𝐴))) ∈ ran log)
9617, 18, 95syl2anc 584 . . . . . . 7 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ran log)
9796ad2antrr 726 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ran log)
98 1re 11107 . . . . . . . . 9 1 ∈ ℝ
9992adantr 480 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (i · 𝐴) ∈ ℝ)
100 readdcl 11084 . . . . . . . . 9 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (1 + (i · 𝐴)) ∈ ℝ)
10198, 99, 100sylancr 587 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (1 + (i · 𝐴)) ∈ ℝ)
102 0red 11110 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 ∈ ℝ)
103 1red 11108 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 1 ∈ ℝ)
104 0lt1 11634 . . . . . . . . . 10 0 < 1
105104a1i 11 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 < 1)
106 addge01 11622 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (0 ≤ (i · 𝐴) ↔ 1 ≤ (1 + (i · 𝐴))))
10798, 92, 106sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (0 ≤ (i · 𝐴) ↔ 1 ≤ (1 + (i · 𝐴))))
108107biimpa 476 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 1 ≤ (1 + (i · 𝐴)))
109102, 103, 101, 105, 108ltletrd 11268 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 < (1 + (i · 𝐴)))
110101, 109elrpd 12926 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (1 + (i · 𝐴)) ∈ ℝ+)
111110relogcld 26554 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℝ)
112 logrnaddcl 26505 . . . . . 6 (((log‘(1 − (i · 𝐴))) ∈ ran log ∧ (log‘(1 + (i · 𝐴))) ∈ ℝ) → ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) ∈ ran log)
11397, 111, 112syl2anc 584 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) ∈ ran log)
11494, 113eqeltrd 2831 . . . 4 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
115 logrncl 26498 . . . . . . 7 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (log‘(1 + (i · 𝐴))) ∈ ran log)
11613, 14, 115syl2anc 584 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ran log)
117116ad2antrr 726 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (log‘(1 + (i · 𝐴))) ∈ ran log)
11892adantr 480 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (i · 𝐴) ∈ ℝ)
119 resubcl 11420 . . . . . . . 8 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (1 − (i · 𝐴)) ∈ ℝ)
12098, 118, 119sylancr 587 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − (i · 𝐴)) ∈ ℝ)
121 0red 11110 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 ∈ ℝ)
122 1red 11108 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 1 ∈ ℝ)
123104a1i 11 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 < 1)
124 1m0e1 12236 . . . . . . . . 9 (1 − 0) = 1
125 1red 11108 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 1 ∈ ℝ)
12692, 86, 125lesub2d 11720 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → ((i · 𝐴) ≤ 0 ↔ (1 − 0) ≤ (1 − (i · 𝐴))))
127126biimpa 476 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − 0) ≤ (1 − (i · 𝐴)))
128124, 127eqbrtrrid 5122 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 1 ≤ (1 − (i · 𝐴)))
129121, 122, 120, 123, 128ltletrd 11268 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 < (1 − (i · 𝐴)))
130120, 129elrpd 12926 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − (i · 𝐴)) ∈ ℝ+)
131130relogcld 26554 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (log‘(1 − (i · 𝐴))) ∈ ℝ)
132 logrnaddcl 26505 . . . . 5 (((log‘(1 + (i · 𝐴))) ∈ ran log ∧ (log‘(1 − (i · 𝐴))) ∈ ℝ) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
133117, 131, 132syl2anc 584 . . . 4 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
13486, 92, 114, 133lecasei 11214 . . 3 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
13585, 134jaodan 959 . 2 ((𝐴 ∈ dom arctan ∧ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
1367, 135syldan 591 1 ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5086  dom cdm 5611  ran crn 5612  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002  ici 11003   + caddc 11004   · cmul 11006   < clt 11141  cle 11142  cmin 11339  -cneg 11340  (,)cioo 13240  cre 14999  cim 15000  πcpi 15968  logclog 26485  arctancatan 26796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790  df-log 26487  df-atan 26799
This theorem is referenced by:  atanlogadd  26846
  Copyright terms: Public domain W3C validator