MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogaddlem Structured version   Visualization version   GIF version

Theorem atanlogaddlem 26875
Description: Lemma for atanlogadd 26876. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
atanlogaddlem ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)

Proof of Theorem atanlogaddlem
StepHypRef Expression
1 0re 11237 . . . 4 0 ∈ ℝ
2 atandm2 26839 . . . . . 6 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
32simp1bi 1145 . . . . 5 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
43recld 15213 . . . 4 (𝐴 ∈ dom arctan → (ℜ‘𝐴) ∈ ℝ)
5 leloe 11321 . . . 4 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 ≤ (ℜ‘𝐴) ↔ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))))
61, 4, 5sylancr 587 . . 3 (𝐴 ∈ dom arctan → (0 ≤ (ℜ‘𝐴) ↔ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))))
76biimpa 476 . 2 ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴)))
8 ax-1cn 11187 . . . . . . . 8 1 ∈ ℂ
9 ax-icn 11188 . . . . . . . . 9 i ∈ ℂ
10 mulcl 11213 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
119, 3, 10sylancr 587 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
12 addcl 11211 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
138, 11, 12sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
142simp3bi 1147 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
1513, 14logcld 26531 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
16 subcl 11481 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
178, 11, 16sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
182simp2bi 1146 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
1917, 18logcld 26531 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2015, 19addcld 11254 . . . . 5 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ)
2120adantr 480 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ)
22 pire 26418 . . . . . . . 8 π ∈ ℝ
2322renegcli 11544 . . . . . . 7 -π ∈ ℝ
2423a1i 11 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ∈ ℝ)
2519adantr 480 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2625imcld 15214 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ ℝ)
2715adantr 480 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
2827imcld 15214 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ ℝ)
2928, 26readdcld 11264 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) ∈ ℝ)
3017adantr 480 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ∈ ℂ)
31 im1 15174 . . . . . . . . . . . . 13 (ℑ‘1) = 0
3231oveq1i 7415 . . . . . . . . . . . 12 ((ℑ‘1) − (ℑ‘(i · 𝐴))) = (0 − (ℑ‘(i · 𝐴)))
33 df-neg 11469 . . . . . . . . . . . 12 -(ℑ‘(i · 𝐴)) = (0 − (ℑ‘(i · 𝐴)))
3432, 33eqtr4i 2761 . . . . . . . . . . 11 ((ℑ‘1) − (ℑ‘(i · 𝐴))) = -(ℑ‘(i · 𝐴))
3511adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
36 imsub 15154 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
378, 35, 36sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
383adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
39 reim 15128 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
4038, 39syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
4140negeqd 11476 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℜ‘𝐴) = -(ℑ‘(i · 𝐴)))
4234, 37, 413eqtr4a 2796 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) = -(ℜ‘𝐴))
434lt0neg2d 11807 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (0 < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < 0))
4443biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℜ‘𝐴) < 0)
4542, 44eqbrtrd 5141 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) < 0)
46 argimlt0 26574 . . . . . . . . 9 (((1 − (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 − (i · 𝐴))) < 0) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0))
4730, 45, 46syl2anc 584 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0))
48 eliooord 13422 . . . . . . . 8 ((ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0) → (-π < (ℑ‘(log‘(1 − (i · 𝐴)))) ∧ (ℑ‘(log‘(1 − (i · 𝐴)))) < 0))
4947, 48syl 17 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(1 − (i · 𝐴)))) ∧ (ℑ‘(log‘(1 − (i · 𝐴)))) < 0))
5049simpld 494 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘(1 − (i · 𝐴)))))
5113adantr 480 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ∈ ℂ)
52 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
53 imadd 15153 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
548, 35, 53sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
5540oveq2d 7421 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘1) + (ℜ‘𝐴)) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
5631oveq1i 7415 . . . . . . . . . . . . 13 ((ℑ‘1) + (ℜ‘𝐴)) = (0 + (ℜ‘𝐴))
5738recld 15213 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
5857recnd 11263 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℂ)
5958addlidd 11436 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 + (ℜ‘𝐴)) = (ℜ‘𝐴))
6056, 59eqtrid 2782 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘1) + (ℜ‘𝐴)) = (ℜ‘𝐴))
6154, 55, 603eqtr2d 2776 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 + (i · 𝐴))) = (ℜ‘𝐴))
6252, 61breqtrrd 5147 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(1 + (i · 𝐴))))
63 argimgt0 26573 . . . . . . . . . 10 (((1 + (i · 𝐴)) ∈ ℂ ∧ 0 < (ℑ‘(1 + (i · 𝐴)))) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π))
6451, 62, 63syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π))
65 eliooord 13422 . . . . . . . . 9 ((ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ∧ (ℑ‘(log‘(1 + (i · 𝐴)))) < π))
6664, 65syl 17 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ∧ (ℑ‘(log‘(1 + (i · 𝐴)))) < π))
6766simpld 494 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(log‘(1 + (i · 𝐴)))))
6828, 26ltaddpos2d 11822 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ↔ (ℑ‘(log‘(1 − (i · 𝐴)))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴)))))))
6967, 68mpbid 232 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7024, 26, 29, 50, 69lttrd 11396 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7127, 25imaddd 15234 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7270, 71breqtrrd 5147 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))))
7322a1i 11 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → π ∈ ℝ)
74 0red 11238 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
7549simprd 495 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) < 0)
7626, 74, 28, 75ltadd2dd 11394 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + 0))
7728recnd 11263 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ ℂ)
7877addridd 11435 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + 0) = (ℑ‘(log‘(1 + (i · 𝐴)))))
7976, 78breqtrd 5145 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < (ℑ‘(log‘(1 + (i · 𝐴)))))
8066simprd 495 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) < π)
8129, 28, 73, 79, 80lttrd 11396 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < π)
8229, 73, 81ltled 11383 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) ≤ π)
8371, 82eqbrtrd 5141 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ≤ π)
84 ellogrn 26520 . . . 4 (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log ↔ (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ ∧ -π < (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ≤ π))
8521, 72, 83, 84syl3anbrc 1344 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
86 0red 11238 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 0 ∈ ℝ)
8711adantr 480 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
88 simpr 484 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 0 = (ℜ‘𝐴))
893adantr 480 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
9089, 39syl 17 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
9188, 90eqtr2d 2771 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (ℑ‘(i · 𝐴)) = 0)
9287, 91reim0bd 15219 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (i · 𝐴) ∈ ℝ)
9315, 19addcomd 11437 . . . . . 6 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
9493ad2antrr 726 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
95 logrncl 26528 . . . . . . . 8 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (log‘(1 − (i · 𝐴))) ∈ ran log)
9617, 18, 95syl2anc 584 . . . . . . 7 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ran log)
9796ad2antrr 726 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ran log)
98 1re 11235 . . . . . . . . 9 1 ∈ ℝ
9992adantr 480 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (i · 𝐴) ∈ ℝ)
100 readdcl 11212 . . . . . . . . 9 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (1 + (i · 𝐴)) ∈ ℝ)
10198, 99, 100sylancr 587 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (1 + (i · 𝐴)) ∈ ℝ)
102 0red 11238 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 ∈ ℝ)
103 1red 11236 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 1 ∈ ℝ)
104 0lt1 11759 . . . . . . . . . 10 0 < 1
105104a1i 11 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 < 1)
106 addge01 11747 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (0 ≤ (i · 𝐴) ↔ 1 ≤ (1 + (i · 𝐴))))
10798, 92, 106sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (0 ≤ (i · 𝐴) ↔ 1 ≤ (1 + (i · 𝐴))))
108107biimpa 476 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 1 ≤ (1 + (i · 𝐴)))
109102, 103, 101, 105, 108ltletrd 11395 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 < (1 + (i · 𝐴)))
110101, 109elrpd 13048 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (1 + (i · 𝐴)) ∈ ℝ+)
111110relogcld 26584 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℝ)
112 logrnaddcl 26535 . . . . . 6 (((log‘(1 − (i · 𝐴))) ∈ ran log ∧ (log‘(1 + (i · 𝐴))) ∈ ℝ) → ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) ∈ ran log)
11397, 111, 112syl2anc 584 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) ∈ ran log)
11494, 113eqeltrd 2834 . . . 4 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
115 logrncl 26528 . . . . . . 7 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (log‘(1 + (i · 𝐴))) ∈ ran log)
11613, 14, 115syl2anc 584 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ran log)
117116ad2antrr 726 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (log‘(1 + (i · 𝐴))) ∈ ran log)
11892adantr 480 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (i · 𝐴) ∈ ℝ)
119 resubcl 11547 . . . . . . . 8 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (1 − (i · 𝐴)) ∈ ℝ)
12098, 118, 119sylancr 587 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − (i · 𝐴)) ∈ ℝ)
121 0red 11238 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 ∈ ℝ)
122 1red 11236 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 1 ∈ ℝ)
123104a1i 11 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 < 1)
124 1m0e1 12361 . . . . . . . . 9 (1 − 0) = 1
125 1red 11236 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 1 ∈ ℝ)
12692, 86, 125lesub2d 11845 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → ((i · 𝐴) ≤ 0 ↔ (1 − 0) ≤ (1 − (i · 𝐴))))
127126biimpa 476 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − 0) ≤ (1 − (i · 𝐴)))
128124, 127eqbrtrrid 5155 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 1 ≤ (1 − (i · 𝐴)))
129121, 122, 120, 123, 128ltletrd 11395 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 < (1 − (i · 𝐴)))
130120, 129elrpd 13048 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − (i · 𝐴)) ∈ ℝ+)
131130relogcld 26584 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (log‘(1 − (i · 𝐴))) ∈ ℝ)
132 logrnaddcl 26535 . . . . 5 (((log‘(1 + (i · 𝐴))) ∈ ran log ∧ (log‘(1 − (i · 𝐴))) ∈ ℝ) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
133117, 131, 132syl2anc 584 . . . 4 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
13486, 92, 114, 133lecasei 11341 . . 3 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
13585, 134jaodan 959 . 2 ((𝐴 ∈ dom arctan ∧ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
1367, 135syldan 591 1 ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  dom cdm 5654  ran crn 5655  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130  ici 11131   + caddc 11132   · cmul 11134   < clt 11269  cle 11270  cmin 11466  -cneg 11467  (,)cioo 13362  cre 15116  cim 15117  πcpi 16082  logclog 26515  arctancatan 26826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-atan 26829
This theorem is referenced by:  atanlogadd  26876
  Copyright terms: Public domain W3C validator