MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogaddlem Structured version   Visualization version   GIF version

Theorem atanlogaddlem 26956
Description: Lemma for atanlogadd 26957. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
atanlogaddlem ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)

Proof of Theorem atanlogaddlem
StepHypRef Expression
1 0re 11263 . . . 4 0 ∈ ℝ
2 atandm2 26920 . . . . . 6 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
32simp1bi 1146 . . . . 5 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
43recld 15233 . . . 4 (𝐴 ∈ dom arctan → (ℜ‘𝐴) ∈ ℝ)
5 leloe 11347 . . . 4 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 ≤ (ℜ‘𝐴) ↔ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))))
61, 4, 5sylancr 587 . . 3 (𝐴 ∈ dom arctan → (0 ≤ (ℜ‘𝐴) ↔ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))))
76biimpa 476 . 2 ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴)))
8 ax-1cn 11213 . . . . . . . 8 1 ∈ ℂ
9 ax-icn 11214 . . . . . . . . 9 i ∈ ℂ
10 mulcl 11239 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
119, 3, 10sylancr 587 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
12 addcl 11237 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
138, 11, 12sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
142simp3bi 1148 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
1513, 14logcld 26612 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
16 subcl 11507 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
178, 11, 16sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
182simp2bi 1147 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
1917, 18logcld 26612 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2015, 19addcld 11280 . . . . 5 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ)
2120adantr 480 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ)
22 pire 26500 . . . . . . . 8 π ∈ ℝ
2322renegcli 11570 . . . . . . 7 -π ∈ ℝ
2423a1i 11 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ∈ ℝ)
2519adantr 480 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
2625imcld 15234 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ ℝ)
2715adantr 480 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
2827imcld 15234 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ ℝ)
2928, 26readdcld 11290 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) ∈ ℝ)
3017adantr 480 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ∈ ℂ)
31 im1 15194 . . . . . . . . . . . . 13 (ℑ‘1) = 0
3231oveq1i 7441 . . . . . . . . . . . 12 ((ℑ‘1) − (ℑ‘(i · 𝐴))) = (0 − (ℑ‘(i · 𝐴)))
33 df-neg 11495 . . . . . . . . . . . 12 -(ℑ‘(i · 𝐴)) = (0 − (ℑ‘(i · 𝐴)))
3432, 33eqtr4i 2768 . . . . . . . . . . 11 ((ℑ‘1) − (ℑ‘(i · 𝐴))) = -(ℑ‘(i · 𝐴))
3511adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
36 imsub 15174 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
378, 35, 36sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
383adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
39 reim 15148 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
4038, 39syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
4140negeqd 11502 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℜ‘𝐴) = -(ℑ‘(i · 𝐴)))
4234, 37, 413eqtr4a 2803 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) = -(ℜ‘𝐴))
434lt0neg2d 11833 . . . . . . . . . . 11 (𝐴 ∈ dom arctan → (0 < (ℜ‘𝐴) ↔ -(ℜ‘𝐴) < 0))
4443biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℜ‘𝐴) < 0)
4542, 44eqbrtrd 5165 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 − (i · 𝐴))) < 0)
46 argimlt0 26655 . . . . . . . . 9 (((1 − (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 − (i · 𝐴))) < 0) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0))
4730, 45, 46syl2anc 584 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0))
48 eliooord 13446 . . . . . . . 8 ((ℑ‘(log‘(1 − (i · 𝐴)))) ∈ (-π(,)0) → (-π < (ℑ‘(log‘(1 − (i · 𝐴)))) ∧ (ℑ‘(log‘(1 − (i · 𝐴)))) < 0))
4947, 48syl 17 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(1 − (i · 𝐴)))) ∧ (ℑ‘(log‘(1 − (i · 𝐴)))) < 0))
5049simpld 494 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘(1 − (i · 𝐴)))))
5113adantr 480 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ∈ ℂ)
52 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
53 imadd 15173 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
548, 35, 53sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
5540oveq2d 7447 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘1) + (ℜ‘𝐴)) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
5631oveq1i 7441 . . . . . . . . . . . . 13 ((ℑ‘1) + (ℜ‘𝐴)) = (0 + (ℜ‘𝐴))
5738recld 15233 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
5857recnd 11289 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℂ)
5958addlidd 11462 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 + (ℜ‘𝐴)) = (ℜ‘𝐴))
6056, 59eqtrid 2789 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘1) + (ℜ‘𝐴)) = (ℜ‘𝐴))
6154, 55, 603eqtr2d 2783 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(1 + (i · 𝐴))) = (ℜ‘𝐴))
6252, 61breqtrrd 5171 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(1 + (i · 𝐴))))
63 argimgt0 26654 . . . . . . . . . 10 (((1 + (i · 𝐴)) ∈ ℂ ∧ 0 < (ℑ‘(1 + (i · 𝐴)))) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π))
6451, 62, 63syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π))
65 eliooord 13446 . . . . . . . . 9 ((ℑ‘(log‘(1 + (i · 𝐴)))) ∈ (0(,)π) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ∧ (ℑ‘(log‘(1 + (i · 𝐴)))) < π))
6664, 65syl 17 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ∧ (ℑ‘(log‘(1 + (i · 𝐴)))) < π))
6766simpld 494 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(log‘(1 + (i · 𝐴)))))
6828, 26ltaddpos2d 11848 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℑ‘(log‘(1 + (i · 𝐴)))) ↔ (ℑ‘(log‘(1 − (i · 𝐴)))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴)))))))
6967, 68mpbid 232 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7024, 26, 29, 50, 69lttrd 11422 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7127, 25imaddd 15254 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) = ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))))
7270, 71breqtrrd 5171 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))))
7322a1i 11 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → π ∈ ℝ)
74 0red 11264 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
7549simprd 495 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) < 0)
7626, 74, 28, 75ltadd2dd 11420 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < ((ℑ‘(log‘(1 + (i · 𝐴)))) + 0))
7728recnd 11289 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) ∈ ℂ)
7877addridd 11461 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + 0) = (ℑ‘(log‘(1 + (i · 𝐴)))))
7976, 78breqtrd 5169 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < (ℑ‘(log‘(1 + (i · 𝐴)))))
8066simprd 495 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) < π)
8129, 28, 73, 79, 80lttrd 11422 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) < π)
8229, 73, 81ltled 11409 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) + (ℑ‘(log‘(1 − (i · 𝐴))))) ≤ π)
8371, 82eqbrtrd 5165 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ≤ π)
84 ellogrn 26601 . . . 4 (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log ↔ (((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ℂ ∧ -π < (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ∧ (ℑ‘((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴))))) ≤ π))
8521, 72, 83, 84syl3anbrc 1344 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
86 0red 11264 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 0 ∈ ℝ)
8711adantr 480 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
88 simpr 484 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 0 = (ℜ‘𝐴))
893adantr 480 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
9089, 39syl 17 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
9188, 90eqtr2d 2778 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (ℑ‘(i · 𝐴)) = 0)
9287, 91reim0bd 15239 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (i · 𝐴) ∈ ℝ)
9315, 19addcomd 11463 . . . . . 6 (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
9493ad2antrr 726 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) = ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))))
95 logrncl 26609 . . . . . . . 8 (((1 − (i · 𝐴)) ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0) → (log‘(1 − (i · 𝐴))) ∈ ran log)
9617, 18, 95syl2anc 584 . . . . . . 7 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ran log)
9796ad2antrr 726 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ran log)
98 1re 11261 . . . . . . . . 9 1 ∈ ℝ
9992adantr 480 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (i · 𝐴) ∈ ℝ)
100 readdcl 11238 . . . . . . . . 9 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (1 + (i · 𝐴)) ∈ ℝ)
10198, 99, 100sylancr 587 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (1 + (i · 𝐴)) ∈ ℝ)
102 0red 11264 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 ∈ ℝ)
103 1red 11262 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 1 ∈ ℝ)
104 0lt1 11785 . . . . . . . . . 10 0 < 1
105104a1i 11 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 < 1)
106 addge01 11773 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (0 ≤ (i · 𝐴) ↔ 1 ≤ (1 + (i · 𝐴))))
10798, 92, 106sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → (0 ≤ (i · 𝐴) ↔ 1 ≤ (1 + (i · 𝐴))))
108107biimpa 476 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 1 ≤ (1 + (i · 𝐴)))
109102, 103, 101, 105, 108ltletrd 11421 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → 0 < (1 + (i · 𝐴)))
110101, 109elrpd 13074 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (1 + (i · 𝐴)) ∈ ℝ+)
111110relogcld 26665 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℝ)
112 logrnaddcl 26616 . . . . . 6 (((log‘(1 − (i · 𝐴))) ∈ ran log ∧ (log‘(1 + (i · 𝐴))) ∈ ℝ) → ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) ∈ ran log)
11397, 111, 112syl2anc 584 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 − (i · 𝐴))) + (log‘(1 + (i · 𝐴)))) ∈ ran log)
11494, 113eqeltrd 2841 . . . 4 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ 0 ≤ (i · 𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
115 logrncl 26609 . . . . . . 7 (((1 + (i · 𝐴)) ∈ ℂ ∧ (1 + (i · 𝐴)) ≠ 0) → (log‘(1 + (i · 𝐴))) ∈ ran log)
11613, 14, 115syl2anc 584 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ran log)
117116ad2antrr 726 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (log‘(1 + (i · 𝐴))) ∈ ran log)
11892adantr 480 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (i · 𝐴) ∈ ℝ)
119 resubcl 11573 . . . . . . . 8 ((1 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (1 − (i · 𝐴)) ∈ ℝ)
12098, 118, 119sylancr 587 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − (i · 𝐴)) ∈ ℝ)
121 0red 11264 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 ∈ ℝ)
122 1red 11262 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 1 ∈ ℝ)
123104a1i 11 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 < 1)
124 1m0e1 12387 . . . . . . . . 9 (1 − 0) = 1
125 1red 11262 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → 1 ∈ ℝ)
12692, 86, 125lesub2d 11871 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → ((i · 𝐴) ≤ 0 ↔ (1 − 0) ≤ (1 − (i · 𝐴))))
127126biimpa 476 . . . . . . . . 9 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − 0) ≤ (1 − (i · 𝐴)))
128124, 127eqbrtrrid 5179 . . . . . . . 8 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 1 ≤ (1 − (i · 𝐴)))
129121, 122, 120, 123, 128ltletrd 11421 . . . . . . 7 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → 0 < (1 − (i · 𝐴)))
130120, 129elrpd 13074 . . . . . 6 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (1 − (i · 𝐴)) ∈ ℝ+)
131130relogcld 26665 . . . . 5 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → (log‘(1 − (i · 𝐴))) ∈ ℝ)
132 logrnaddcl 26616 . . . . 5 (((log‘(1 + (i · 𝐴))) ∈ ran log ∧ (log‘(1 − (i · 𝐴))) ∈ ℝ) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
133117, 131, 132syl2anc 584 . . . 4 (((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) ∧ (i · 𝐴) ≤ 0) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
13486, 92, 114, 133lecasei 11367 . . 3 ((𝐴 ∈ dom arctan ∧ 0 = (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
13585, 134jaodan 960 . 2 ((𝐴 ∈ dom arctan ∧ (0 < (ℜ‘𝐴) ∨ 0 = (ℜ‘𝐴))) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
1367, 135syldan 591 1 ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  dom cdm 5685  ran crn 5686  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156  ici 11157   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493  (,)cioo 13387  cre 15136  cim 15137  πcpi 16102  logclog 26596  arctancatan 26907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-atan 26910
This theorem is referenced by:  atanlogadd  26957
  Copyright terms: Public domain W3C validator