MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addge01d Structured version   Visualization version   GIF version

Theorem addge01d 11766
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
addge01d (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))

Proof of Theorem addge01d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 addge01 11688 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
41, 2, 3syl2anc 584 1 (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068   + caddc 11071  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214
This theorem is referenced by:  xralrple  13165  2tnp1ge0ge0  13791  sermono  13999  bernneq  14194  01sqrexlem7  15214  absrele  15274  climserle  15629  iseraltlem3  15650  fsumless  15762  sinbnd  16148  sadcaddlem  16427  mndodconglem  19471  isabvd  20721  psdmul  22053  ovolicc2lem4  25421  ioombl1lem4  25462  ioorcl2  25473  mbfi1fseqlem6  25621  coemulhi  26159  cxpaddle  26662  jensenlem2  26898  padicabv  27541  axpaschlem  28867  chscllem2  31567  hstle1  32155  gsumwrd2dccatlem  33006  esumpcvgval  34068  itg2addnclem  37665  itg2addnc  37668  areacirclem5  37706  lcmineqlem18  42034  sticksstones6  42139  sticksstones7  42140  sticksstones22  42156  pell1qrge1  42858  ltrmxnn0  42938  xralrple4  45369  xralrple3  45370  mccllem  45595  wallispilem4  46066  fourierdlem42  46147  fourierdlem65  46169  etransclem35  46267  smfmullem1  46789  smfmullem2  46790  smfmullem3  46791
  Copyright terms: Public domain W3C validator