MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addge01d Structured version   Visualization version   GIF version

Theorem addge01d 11712
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
addge01d (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))

Proof of Theorem addge01d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 addge01 11634 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
41, 2, 3syl2anc 584 1 (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2113   class class class wbr 5093  (class class class)co 7352  cr 11012  0cc0 11013   + caddc 11016  cle 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159
This theorem is referenced by:  xralrple  13106  2tnp1ge0ge0  13735  sermono  13943  bernneq  14138  01sqrexlem7  15157  absrele  15217  climserle  15572  iseraltlem3  15593  fsumless  15705  sinbnd  16091  sadcaddlem  16370  mndodconglem  19455  isabvd  20729  psdmul  22082  ovolicc2lem4  25449  ioombl1lem4  25490  ioorcl2  25501  mbfi1fseqlem6  25649  coemulhi  26187  cxpaddle  26690  jensenlem2  26926  padicabv  27569  axpaschlem  28920  chscllem2  31620  hstle1  32208  gsumwrd2dccatlem  33053  esumpcvgval  34112  itg2addnclem  37731  itg2addnc  37734  areacirclem5  37772  lcmineqlem18  42159  sticksstones6  42264  sticksstones7  42265  sticksstones22  42281  pell1qrge1  42987  ltrmxnn0  43066  xralrple4  45495  xralrple3  45496  mccllem  45721  wallispilem4  46190  fourierdlem42  46271  fourierdlem65  46293  etransclem35  46391  smfmullem1  46913  smfmullem2  46914  smfmullem3  46915
  Copyright terms: Public domain W3C validator