![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addge01d | Structured version Visualization version GIF version |
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
addge01d | ⊢ (𝜑 → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | addge01 11771 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 + caddc 11156 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 |
This theorem is referenced by: xralrple 13244 2tnp1ge0ge0 13866 sermono 14072 bernneq 14265 01sqrexlem7 15284 absrele 15344 climserle 15696 iseraltlem3 15717 fsumless 15829 sinbnd 16213 sadcaddlem 16491 mndodconglem 19574 isabvd 20830 psdmul 22188 ovolicc2lem4 25569 ioombl1lem4 25610 ioorcl2 25621 mbfi1fseqlem6 25770 coemulhi 26308 cxpaddle 26810 jensenlem2 27046 padicabv 27689 axpaschlem 28970 chscllem2 31667 hstle1 32255 gsumwrd2dccatlem 33052 esumpcvgval 34059 itg2addnclem 37658 itg2addnc 37661 areacirclem5 37699 lcmineqlem18 42028 sticksstones6 42133 sticksstones7 42134 sticksstones22 42150 pell1qrge1 42858 ltrmxnn0 42938 xralrple4 45323 xralrple3 45324 mccllem 45553 wallispilem4 46024 fourierdlem42 46105 fourierdlem65 46127 etransclem35 46225 smfmullem1 46747 smfmullem2 46748 smfmullem3 46749 |
Copyright terms: Public domain | W3C validator |