| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addge01d | Structured version Visualization version GIF version | ||
| Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| addge01d | ⊢ (𝜑 → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | addge01 11634 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 ℝcr 11012 0cc0 11013 + caddc 11016 ≤ cle 11154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 |
| This theorem is referenced by: xralrple 13106 2tnp1ge0ge0 13735 sermono 13943 bernneq 14138 01sqrexlem7 15157 absrele 15217 climserle 15572 iseraltlem3 15593 fsumless 15705 sinbnd 16091 sadcaddlem 16370 mndodconglem 19455 isabvd 20729 psdmul 22082 ovolicc2lem4 25449 ioombl1lem4 25490 ioorcl2 25501 mbfi1fseqlem6 25649 coemulhi 26187 cxpaddle 26690 jensenlem2 26926 padicabv 27569 axpaschlem 28920 chscllem2 31620 hstle1 32208 gsumwrd2dccatlem 33053 esumpcvgval 34112 itg2addnclem 37731 itg2addnc 37734 areacirclem5 37772 lcmineqlem18 42159 sticksstones6 42264 sticksstones7 42265 sticksstones22 42281 pell1qrge1 42987 ltrmxnn0 43066 xralrple4 45495 xralrple3 45496 mccllem 45721 wallispilem4 46190 fourierdlem42 46271 fourierdlem65 46293 etransclem35 46391 smfmullem1 46913 smfmullem2 46914 smfmullem3 46915 |
| Copyright terms: Public domain | W3C validator |