MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0addge1 Structured version   Visualization version   GIF version

Theorem nn0addge1 11935
Description: A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
Assertion
Ref Expression
nn0addge1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 𝑁))

Proof of Theorem nn0addge1
StepHypRef Expression
1 nn0re 11898 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 nn0ge0 11914 . . 3 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
31, 2jca 514 . 2 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
4 addge01 11142 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁𝐴 ≤ (𝐴 + 𝑁)))
54biimp3a 1462 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) → 𝐴 ≤ (𝐴 + 𝑁))
653expb 1114 . 2 ((𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) → 𝐴 ≤ (𝐴 + 𝑁))
73, 6sylan2 594 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2107   class class class wbr 5057  (class class class)co 7148  cr 10528  0cc0 10529   + caddc 10532  cle 10668  0cn0 11889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890
This theorem is referenced by:  nn0addge1i  11937  eluzmn  12242  fzctr  13011  elincfzoext  13087  pcaddlem  16216  psgnunilem2  18615  mndodconglem  18661  efgredleme  18861  mplmonmul  20237  coe1tmmul2fv  20438  coe1pwmulfv  20440  uniioombllem3  24178  coe1mul3  24685  ply1divmo  24721  plydiveu  24879  quotcan  24890  leibpi  25512  basellem6  25655  chtublem  25779  pntrmax  26132  signstfvc  31837  fourierdlem47  42428
  Copyright terms: Public domain W3C validator