MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0s0suc Structured version   Visualization version   GIF version

Theorem n0s0suc 28346
Description: A non-negative surreal integer is either zero or a successor. (Contributed by Scott Fenton, 26-Jul-2025.)
Assertion
Ref Expression
n0s0suc (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s )))
Distinct variable group:   𝑥,𝐴

Proof of Theorem n0s0suc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2740 . . 3 (𝑦 = 0s → (𝑦 = 0s ↔ 0s = 0s ))
2 eqeq1 2740 . . . 4 (𝑦 = 0s → (𝑦 = (𝑥 +s 1s ) ↔ 0s = (𝑥 +s 1s )))
32rexbidv 3178 . . 3 (𝑦 = 0s → (∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 0s = (𝑥 +s 1s )))
41, 3orbi12d 918 . 2 (𝑦 = 0s → ((𝑦 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s )) ↔ ( 0s = 0s ∨ ∃𝑥 ∈ ℕ0s 0s = (𝑥 +s 1s ))))
5 eqeq1 2740 . . 3 (𝑦 = 𝑧 → (𝑦 = 0s𝑧 = 0s ))
6 eqeq1 2740 . . . 4 (𝑦 = 𝑧 → (𝑦 = (𝑥 +s 1s ) ↔ 𝑧 = (𝑥 +s 1s )))
76rexbidv 3178 . . 3 (𝑦 = 𝑧 → (∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑧 = (𝑥 +s 1s )))
85, 7orbi12d 918 . 2 (𝑦 = 𝑧 → ((𝑦 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s )) ↔ (𝑧 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑧 = (𝑥 +s 1s ))))
9 eqeq1 2740 . . 3 (𝑦 = (𝑧 +s 1s ) → (𝑦 = 0s ↔ (𝑧 +s 1s ) = 0s ))
10 eqeq1 2740 . . . 4 (𝑦 = (𝑧 +s 1s ) → (𝑦 = (𝑥 +s 1s ) ↔ (𝑧 +s 1s ) = (𝑥 +s 1s )))
1110rexbidv 3178 . . 3 (𝑦 = (𝑧 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s )))
129, 11orbi12d 918 . 2 (𝑦 = (𝑧 +s 1s ) → ((𝑦 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s )) ↔ ((𝑧 +s 1s ) = 0s ∨ ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s ))))
13 eqeq1 2740 . . 3 (𝑦 = 𝐴 → (𝑦 = 0s𝐴 = 0s ))
14 eqeq1 2740 . . . 4 (𝑦 = 𝐴 → (𝑦 = (𝑥 +s 1s ) ↔ 𝐴 = (𝑥 +s 1s )))
1514rexbidv 3178 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s )))
1613, 15orbi12d 918 . 2 (𝑦 = 𝐴 → ((𝑦 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s )) ↔ (𝐴 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s ))))
17 eqid 2736 . . 3 0s = 0s
1817orci 865 . 2 ( 0s = 0s ∨ ∃𝑥 ∈ ℕ0s 0s = (𝑥 +s 1s ))
19 clel5 3664 . . . . . 6 (𝑧 ∈ ℕ0s ↔ ∃𝑥 ∈ ℕ0s 𝑧 = 𝑥)
2019biimpi 216 . . . . 5 (𝑧 ∈ ℕ0s → ∃𝑥 ∈ ℕ0s 𝑧 = 𝑥)
21 n0sno 28329 . . . . . . 7 (𝑧 ∈ ℕ0s𝑧 No )
22 n0sno 28329 . . . . . . 7 (𝑥 ∈ ℕ0s𝑥 No )
23 1sno 27873 . . . . . . . 8 1s No
24 addscan2 28027 . . . . . . . 8 ((𝑧 No 𝑥 No ∧ 1s No ) → ((𝑧 +s 1s ) = (𝑥 +s 1s ) ↔ 𝑧 = 𝑥))
2523, 24mp3an3 1451 . . . . . . 7 ((𝑧 No 𝑥 No ) → ((𝑧 +s 1s ) = (𝑥 +s 1s ) ↔ 𝑧 = 𝑥))
2621, 22, 25syl2an 596 . . . . . 6 ((𝑧 ∈ ℕ0s𝑥 ∈ ℕ0s) → ((𝑧 +s 1s ) = (𝑥 +s 1s ) ↔ 𝑧 = 𝑥))
2726rexbidva 3176 . . . . 5 (𝑧 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑧 = 𝑥))
2820, 27mpbird 257 . . . 4 (𝑧 ∈ ℕ0s → ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s ))
2928olcd 874 . . 3 (𝑧 ∈ ℕ0s → ((𝑧 +s 1s ) = 0s ∨ ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s )))
3029a1d 25 . 2 (𝑧 ∈ ℕ0s → ((𝑧 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑧 = (𝑥 +s 1s )) → ((𝑧 +s 1s ) = 0s ∨ ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s ))))
314, 8, 12, 16, 18, 30n0sind 28338 1 (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1539  wcel 2107  wrex 3069  (class class class)co 7432   No csur 27685   0s c0s 27868   1s c1s 27869   +s cadds 27993  0scnn0s 28319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-nadd 8705  df-no 27688  df-slt 27689  df-bday 27690  df-sle 27791  df-sslt 27827  df-scut 27829  df-0s 27870  df-1s 27871  df-made 27887  df-old 27888  df-left 27890  df-right 27891  df-norec2 27983  df-adds 27994  df-n0s 28321
This theorem is referenced by:  nnsge1  28347  dfnns2  28363
  Copyright terms: Public domain W3C validator