MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0s0suc Structured version   Visualization version   GIF version

Theorem n0s0suc 28241
Description: A non-negative surreal integer is either zero or a successor. (Contributed by Scott Fenton, 26-Jul-2025.)
Assertion
Ref Expression
n0s0suc (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s )))
Distinct variable group:   𝑥,𝐴

Proof of Theorem n0s0suc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2733 . . 3 (𝑦 = 0s → (𝑦 = 0s ↔ 0s = 0s ))
2 eqeq1 2733 . . . 4 (𝑦 = 0s → (𝑦 = (𝑥 +s 1s ) ↔ 0s = (𝑥 +s 1s )))
32rexbidv 3153 . . 3 (𝑦 = 0s → (∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 0s = (𝑥 +s 1s )))
41, 3orbi12d 918 . 2 (𝑦 = 0s → ((𝑦 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s )) ↔ ( 0s = 0s ∨ ∃𝑥 ∈ ℕ0s 0s = (𝑥 +s 1s ))))
5 eqeq1 2733 . . 3 (𝑦 = 𝑧 → (𝑦 = 0s𝑧 = 0s ))
6 eqeq1 2733 . . . 4 (𝑦 = 𝑧 → (𝑦 = (𝑥 +s 1s ) ↔ 𝑧 = (𝑥 +s 1s )))
76rexbidv 3153 . . 3 (𝑦 = 𝑧 → (∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑧 = (𝑥 +s 1s )))
85, 7orbi12d 918 . 2 (𝑦 = 𝑧 → ((𝑦 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s )) ↔ (𝑧 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑧 = (𝑥 +s 1s ))))
9 eqeq1 2733 . . 3 (𝑦 = (𝑧 +s 1s ) → (𝑦 = 0s ↔ (𝑧 +s 1s ) = 0s ))
10 eqeq1 2733 . . . 4 (𝑦 = (𝑧 +s 1s ) → (𝑦 = (𝑥 +s 1s ) ↔ (𝑧 +s 1s ) = (𝑥 +s 1s )))
1110rexbidv 3153 . . 3 (𝑦 = (𝑧 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s )))
129, 11orbi12d 918 . 2 (𝑦 = (𝑧 +s 1s ) → ((𝑦 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s )) ↔ ((𝑧 +s 1s ) = 0s ∨ ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s ))))
13 eqeq1 2733 . . 3 (𝑦 = 𝐴 → (𝑦 = 0s𝐴 = 0s ))
14 eqeq1 2733 . . . 4 (𝑦 = 𝐴 → (𝑦 = (𝑥 +s 1s ) ↔ 𝐴 = (𝑥 +s 1s )))
1514rexbidv 3153 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s )))
1613, 15orbi12d 918 . 2 (𝑦 = 𝐴 → ((𝑦 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s )) ↔ (𝐴 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s ))))
17 eqid 2729 . . 3 0s = 0s
1817orci 865 . 2 ( 0s = 0s ∨ ∃𝑥 ∈ ℕ0s 0s = (𝑥 +s 1s ))
19 clel5 3620 . . . . . 6 (𝑧 ∈ ℕ0s ↔ ∃𝑥 ∈ ℕ0s 𝑧 = 𝑥)
2019biimpi 216 . . . . 5 (𝑧 ∈ ℕ0s → ∃𝑥 ∈ ℕ0s 𝑧 = 𝑥)
21 n0sno 28223 . . . . . . 7 (𝑧 ∈ ℕ0s𝑧 No )
22 n0sno 28223 . . . . . . 7 (𝑥 ∈ ℕ0s𝑥 No )
23 1sno 27742 . . . . . . . 8 1s No
24 addscan2 27907 . . . . . . . 8 ((𝑧 No 𝑥 No ∧ 1s No ) → ((𝑧 +s 1s ) = (𝑥 +s 1s ) ↔ 𝑧 = 𝑥))
2523, 24mp3an3 1452 . . . . . . 7 ((𝑧 No 𝑥 No ) → ((𝑧 +s 1s ) = (𝑥 +s 1s ) ↔ 𝑧 = 𝑥))
2621, 22, 25syl2an 596 . . . . . 6 ((𝑧 ∈ ℕ0s𝑥 ∈ ℕ0s) → ((𝑧 +s 1s ) = (𝑥 +s 1s ) ↔ 𝑧 = 𝑥))
2726rexbidva 3151 . . . . 5 (𝑧 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑧 = 𝑥))
2820, 27mpbird 257 . . . 4 (𝑧 ∈ ℕ0s → ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s ))
2928olcd 874 . . 3 (𝑧 ∈ ℕ0s → ((𝑧 +s 1s ) = 0s ∨ ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s )))
3029a1d 25 . 2 (𝑧 ∈ ℕ0s → ((𝑧 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑧 = (𝑥 +s 1s )) → ((𝑧 +s 1s ) = 0s ∨ ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s ))))
314, 8, 12, 16, 18, 30n0sind 28232 1 (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7349   No csur 27549   0s c0s 27737   1s c1s 27738   +s cadds 27873  0scnn0s 28213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27739  df-1s 27740  df-made 27759  df-old 27760  df-left 27762  df-right 27763  df-norec2 27863  df-adds 27874  df-n0s 28215
This theorem is referenced by:  nnsge1  28242  dfnns2  28268
  Copyright terms: Public domain W3C validator