MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0s0suc Structured version   Visualization version   GIF version

Theorem n0s0suc 28291
Description: A non-negative surreal integer is either zero or a successor. (Contributed by Scott Fenton, 26-Jul-2025.)
Assertion
Ref Expression
n0s0suc (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s )))
Distinct variable group:   𝑥,𝐴

Proof of Theorem n0s0suc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2740 . . 3 (𝑦 = 0s → (𝑦 = 0s ↔ 0s = 0s ))
2 eqeq1 2740 . . . 4 (𝑦 = 0s → (𝑦 = (𝑥 +s 1s ) ↔ 0s = (𝑥 +s 1s )))
32rexbidv 3165 . . 3 (𝑦 = 0s → (∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 0s = (𝑥 +s 1s )))
41, 3orbi12d 918 . 2 (𝑦 = 0s → ((𝑦 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s )) ↔ ( 0s = 0s ∨ ∃𝑥 ∈ ℕ0s 0s = (𝑥 +s 1s ))))
5 eqeq1 2740 . . 3 (𝑦 = 𝑧 → (𝑦 = 0s𝑧 = 0s ))
6 eqeq1 2740 . . . 4 (𝑦 = 𝑧 → (𝑦 = (𝑥 +s 1s ) ↔ 𝑧 = (𝑥 +s 1s )))
76rexbidv 3165 . . 3 (𝑦 = 𝑧 → (∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑧 = (𝑥 +s 1s )))
85, 7orbi12d 918 . 2 (𝑦 = 𝑧 → ((𝑦 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s )) ↔ (𝑧 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑧 = (𝑥 +s 1s ))))
9 eqeq1 2740 . . 3 (𝑦 = (𝑧 +s 1s ) → (𝑦 = 0s ↔ (𝑧 +s 1s ) = 0s ))
10 eqeq1 2740 . . . 4 (𝑦 = (𝑧 +s 1s ) → (𝑦 = (𝑥 +s 1s ) ↔ (𝑧 +s 1s ) = (𝑥 +s 1s )))
1110rexbidv 3165 . . 3 (𝑦 = (𝑧 +s 1s ) → (∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s )))
129, 11orbi12d 918 . 2 (𝑦 = (𝑧 +s 1s ) → ((𝑦 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s )) ↔ ((𝑧 +s 1s ) = 0s ∨ ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s ))))
13 eqeq1 2740 . . 3 (𝑦 = 𝐴 → (𝑦 = 0s𝐴 = 0s ))
14 eqeq1 2740 . . . 4 (𝑦 = 𝐴 → (𝑦 = (𝑥 +s 1s ) ↔ 𝐴 = (𝑥 +s 1s )))
1514rexbidv 3165 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s )))
1613, 15orbi12d 918 . 2 (𝑦 = 𝐴 → ((𝑦 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑦 = (𝑥 +s 1s )) ↔ (𝐴 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s ))))
17 eqid 2736 . . 3 0s = 0s
1817orci 865 . 2 ( 0s = 0s ∨ ∃𝑥 ∈ ℕ0s 0s = (𝑥 +s 1s ))
19 clel5 3649 . . . . . 6 (𝑧 ∈ ℕ0s ↔ ∃𝑥 ∈ ℕ0s 𝑧 = 𝑥)
2019biimpi 216 . . . . 5 (𝑧 ∈ ℕ0s → ∃𝑥 ∈ ℕ0s 𝑧 = 𝑥)
21 n0sno 28273 . . . . . . 7 (𝑧 ∈ ℕ0s𝑧 No )
22 n0sno 28273 . . . . . . 7 (𝑥 ∈ ℕ0s𝑥 No )
23 1sno 27796 . . . . . . . 8 1s No
24 addscan2 27957 . . . . . . . 8 ((𝑧 No 𝑥 No ∧ 1s No ) → ((𝑧 +s 1s ) = (𝑥 +s 1s ) ↔ 𝑧 = 𝑥))
2523, 24mp3an3 1452 . . . . . . 7 ((𝑧 No 𝑥 No ) → ((𝑧 +s 1s ) = (𝑥 +s 1s ) ↔ 𝑧 = 𝑥))
2621, 22, 25syl2an 596 . . . . . 6 ((𝑧 ∈ ℕ0s𝑥 ∈ ℕ0s) → ((𝑧 +s 1s ) = (𝑥 +s 1s ) ↔ 𝑧 = 𝑥))
2726rexbidva 3163 . . . . 5 (𝑧 ∈ ℕ0s → (∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s ) ↔ ∃𝑥 ∈ ℕ0s 𝑧 = 𝑥))
2820, 27mpbird 257 . . . 4 (𝑧 ∈ ℕ0s → ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s ))
2928olcd 874 . . 3 (𝑧 ∈ ℕ0s → ((𝑧 +s 1s ) = 0s ∨ ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s )))
3029a1d 25 . 2 (𝑧 ∈ ℕ0s → ((𝑧 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝑧 = (𝑥 +s 1s )) → ((𝑧 +s 1s ) = 0s ∨ ∃𝑥 ∈ ℕ0s (𝑧 +s 1s ) = (𝑥 +s 1s ))))
314, 8, 12, 16, 18, 30n0sind 28282 1 (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ ∃𝑥 ∈ ℕ0s 𝐴 = (𝑥 +s 1s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wrex 3061  (class class class)co 7410   No csur 27608   0s c0s 27791   1s c1s 27792   +s cadds 27923  0scnn0s 28263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec2 27913  df-adds 27924  df-n0s 28265
This theorem is referenced by:  nnsge1  28292  dfnns2  28318
  Copyright terms: Public domain W3C validator