MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsfo Structured version   Visualization version   GIF version

Theorem addsfo 27936
Description: Surreal addition is onto. (Contributed by Scott Fenton, 21-Jan-2025.)
Assertion
Ref Expression
addsfo +s :( No × No )–onto No

Proof of Theorem addsfo
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsf 27935 . 2 +s :( No × No )⟶ No
2 0sno 27780 . . . . 5 0s No
3 opelxpi 5658 . . . . 5 ((𝑧 No ∧ 0s No ) → ⟨𝑧, 0s ⟩ ∈ ( No × No ))
42, 3mpan2 691 . . . 4 (𝑧 No → ⟨𝑧, 0s ⟩ ∈ ( No × No ))
5 addsrid 27917 . . . . 5 (𝑧 No → (𝑧 +s 0s ) = 𝑧)
65eqcomd 2739 . . . 4 (𝑧 No 𝑧 = (𝑧 +s 0s ))
7 fveq2 6831 . . . . . 6 (𝑥 = ⟨𝑧, 0s ⟩ → ( +s𝑥) = ( +s ‘⟨𝑧, 0s ⟩))
8 df-ov 7358 . . . . . 6 (𝑧 +s 0s ) = ( +s ‘⟨𝑧, 0s ⟩)
97, 8eqtr4di 2786 . . . . 5 (𝑥 = ⟨𝑧, 0s ⟩ → ( +s𝑥) = (𝑧 +s 0s ))
109rspceeqv 3597 . . . 4 ((⟨𝑧, 0s ⟩ ∈ ( No × No ) ∧ 𝑧 = (𝑧 +s 0s )) → ∃𝑥 ∈ ( No × No )𝑧 = ( +s𝑥))
114, 6, 10syl2anc 584 . . 3 (𝑧 No → ∃𝑥 ∈ ( No × No )𝑧 = ( +s𝑥))
1211rgen 3051 . 2 𝑧 No 𝑥 ∈ ( No × No )𝑧 = ( +s𝑥)
13 dffo3 7044 . 2 ( +s :( No × No )–onto No ↔ ( +s :( No × No )⟶ No ∧ ∀𝑧 No 𝑥 ∈ ( No × No )𝑧 = ( +s𝑥)))
141, 12, 13mpbir2an 711 1 +s :( No × No )–onto No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  wral 3049  wrex 3058  cop 4583   × cxp 5619  wf 6485  ontowfo 6487  cfv 6489  (class class class)co 7355   No csur 27588   0s c0s 27776   +s cadds 27912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-1o 8394  df-2o 8395  df-nadd 8590  df-no 27591  df-slt 27592  df-bday 27593  df-sslt 27731  df-scut 27733  df-0s 27778  df-made 27798  df-old 27799  df-left 27801  df-right 27802  df-norec2 27902  df-adds 27913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator