![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsfo | Structured version Visualization version GIF version |
Description: Surreal addition is onto. (Contributed by Scott Fenton, 21-Jan-2025.) |
Ref | Expression |
---|---|
addsfo | ⊢ +s :( No × No )–onto→ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsf 27990 | . 2 ⊢ +s :( No × No )⟶ No | |
2 | 0sno 27850 | . . . . 5 ⊢ 0s ∈ No | |
3 | opelxpi 5709 | . . . . 5 ⊢ ((𝑧 ∈ No ∧ 0s ∈ No ) → 〈𝑧, 0s 〉 ∈ ( No × No )) | |
4 | 2, 3 | mpan2 689 | . . . 4 ⊢ (𝑧 ∈ No → 〈𝑧, 0s 〉 ∈ ( No × No )) |
5 | addsrid 27972 | . . . . 5 ⊢ (𝑧 ∈ No → (𝑧 +s 0s ) = 𝑧) | |
6 | 5 | eqcomd 2732 | . . . 4 ⊢ (𝑧 ∈ No → 𝑧 = (𝑧 +s 0s )) |
7 | fveq2 6890 | . . . . . 6 ⊢ (𝑥 = 〈𝑧, 0s 〉 → ( +s ‘𝑥) = ( +s ‘〈𝑧, 0s 〉)) | |
8 | df-ov 7416 | . . . . . 6 ⊢ (𝑧 +s 0s ) = ( +s ‘〈𝑧, 0s 〉) | |
9 | 7, 8 | eqtr4di 2784 | . . . . 5 ⊢ (𝑥 = 〈𝑧, 0s 〉 → ( +s ‘𝑥) = (𝑧 +s 0s )) |
10 | 9 | rspceeqv 3629 | . . . 4 ⊢ ((〈𝑧, 0s 〉 ∈ ( No × No ) ∧ 𝑧 = (𝑧 +s 0s )) → ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥)) |
11 | 4, 6, 10 | syl2anc 582 | . . 3 ⊢ (𝑧 ∈ No → ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥)) |
12 | 11 | rgen 3053 | . 2 ⊢ ∀𝑧 ∈ No ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥) |
13 | dffo3 7105 | . 2 ⊢ ( +s :( No × No )–onto→ No ↔ ( +s :( No × No )⟶ No ∧ ∀𝑧 ∈ No ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥))) | |
14 | 1, 12, 13 | mpbir2an 709 | 1 ⊢ +s :( No × No )–onto→ No |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 〈cop 4629 × cxp 5670 ⟶wf 6539 –onto→wfo 6541 ‘cfv 6543 (class class class)co 7413 No csur 27663 0s c0s 27846 +s cadds 27967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-1o 8485 df-2o 8486 df-nadd 8685 df-no 27666 df-slt 27667 df-bday 27668 df-sslt 27805 df-scut 27807 df-0s 27848 df-made 27865 df-old 27866 df-left 27868 df-right 27869 df-norec2 27957 df-adds 27968 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |