![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsfo | Structured version Visualization version GIF version |
Description: Surreal addition is onto. (Contributed by Scott Fenton, 21-Jan-2025.) |
Ref | Expression |
---|---|
addsfo | ⊢ +s :( No × No )–onto→ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsf 27466 | . 2 ⊢ +s :( No × No )⟶ No | |
2 | 0sno 27327 | . . . . 5 ⊢ 0s ∈ No | |
3 | opelxpi 5714 | . . . . 5 ⊢ ((𝑧 ∈ No ∧ 0s ∈ No ) → ⟨𝑧, 0s ⟩ ∈ ( No × No )) | |
4 | 2, 3 | mpan2 690 | . . . 4 ⊢ (𝑧 ∈ No → ⟨𝑧, 0s ⟩ ∈ ( No × No )) |
5 | addsrid 27448 | . . . . 5 ⊢ (𝑧 ∈ No → (𝑧 +s 0s ) = 𝑧) | |
6 | 5 | eqcomd 2739 | . . . 4 ⊢ (𝑧 ∈ No → 𝑧 = (𝑧 +s 0s )) |
7 | fveq2 6892 | . . . . . 6 ⊢ (𝑥 = ⟨𝑧, 0s ⟩ → ( +s ‘𝑥) = ( +s ‘⟨𝑧, 0s ⟩)) | |
8 | df-ov 7412 | . . . . . 6 ⊢ (𝑧 +s 0s ) = ( +s ‘⟨𝑧, 0s ⟩) | |
9 | 7, 8 | eqtr4di 2791 | . . . . 5 ⊢ (𝑥 = ⟨𝑧, 0s ⟩ → ( +s ‘𝑥) = (𝑧 +s 0s )) |
10 | 9 | rspceeqv 3634 | . . . 4 ⊢ ((⟨𝑧, 0s ⟩ ∈ ( No × No ) ∧ 𝑧 = (𝑧 +s 0s )) → ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥)) |
11 | 4, 6, 10 | syl2anc 585 | . . 3 ⊢ (𝑧 ∈ No → ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥)) |
12 | 11 | rgen 3064 | . 2 ⊢ ∀𝑧 ∈ No ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥) |
13 | dffo3 7104 | . 2 ⊢ ( +s :( No × No )–onto→ No ↔ ( +s :( No × No )⟶ No ∧ ∀𝑧 ∈ No ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥))) | |
14 | 1, 12, 13 | mpbir2an 710 | 1 ⊢ +s :( No × No )–onto→ No |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 ⟨cop 4635 × cxp 5675 ⟶wf 6540 –onto→wfo 6542 ‘cfv 6544 (class class class)co 7409 No csur 27143 0s c0s 27323 +s cadds 27443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-1o 8466 df-2o 8467 df-nadd 8665 df-no 27146 df-slt 27147 df-bday 27148 df-sslt 27283 df-scut 27285 df-0s 27325 df-made 27342 df-old 27343 df-left 27345 df-right 27346 df-norec2 27433 df-adds 27444 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |