| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsfo | Structured version Visualization version GIF version | ||
| Description: Surreal addition is onto. (Contributed by Scott Fenton, 21-Jan-2025.) |
| Ref | Expression |
|---|---|
| addsfo | ⊢ +s :( No × No )–onto→ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addsf 27935 | . 2 ⊢ +s :( No × No )⟶ No | |
| 2 | 0sno 27780 | . . . . 5 ⊢ 0s ∈ No | |
| 3 | opelxpi 5658 | . . . . 5 ⊢ ((𝑧 ∈ No ∧ 0s ∈ No ) → 〈𝑧, 0s 〉 ∈ ( No × No )) | |
| 4 | 2, 3 | mpan2 691 | . . . 4 ⊢ (𝑧 ∈ No → 〈𝑧, 0s 〉 ∈ ( No × No )) |
| 5 | addsrid 27917 | . . . . 5 ⊢ (𝑧 ∈ No → (𝑧 +s 0s ) = 𝑧) | |
| 6 | 5 | eqcomd 2739 | . . . 4 ⊢ (𝑧 ∈ No → 𝑧 = (𝑧 +s 0s )) |
| 7 | fveq2 6831 | . . . . . 6 ⊢ (𝑥 = 〈𝑧, 0s 〉 → ( +s ‘𝑥) = ( +s ‘〈𝑧, 0s 〉)) | |
| 8 | df-ov 7358 | . . . . . 6 ⊢ (𝑧 +s 0s ) = ( +s ‘〈𝑧, 0s 〉) | |
| 9 | 7, 8 | eqtr4di 2786 | . . . . 5 ⊢ (𝑥 = 〈𝑧, 0s 〉 → ( +s ‘𝑥) = (𝑧 +s 0s )) |
| 10 | 9 | rspceeqv 3597 | . . . 4 ⊢ ((〈𝑧, 0s 〉 ∈ ( No × No ) ∧ 𝑧 = (𝑧 +s 0s )) → ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥)) |
| 11 | 4, 6, 10 | syl2anc 584 | . . 3 ⊢ (𝑧 ∈ No → ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥)) |
| 12 | 11 | rgen 3051 | . 2 ⊢ ∀𝑧 ∈ No ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥) |
| 13 | dffo3 7044 | . 2 ⊢ ( +s :( No × No )–onto→ No ↔ ( +s :( No × No )⟶ No ∧ ∀𝑧 ∈ No ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥))) | |
| 14 | 1, 12, 13 | mpbir2an 711 | 1 ⊢ +s :( No × No )–onto→ No |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∃wrex 3058 〈cop 4583 × cxp 5619 ⟶wf 6485 –onto→wfo 6487 ‘cfv 6489 (class class class)co 7355 No csur 27588 0s c0s 27776 +s cadds 27912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-1o 8394 df-2o 8395 df-nadd 8590 df-no 27591 df-slt 27592 df-bday 27593 df-sslt 27731 df-scut 27733 df-0s 27778 df-made 27798 df-old 27799 df-left 27801 df-right 27802 df-norec2 27902 df-adds 27913 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |