![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsfo | Structured version Visualization version GIF version |
Description: Surreal addition is onto. (Contributed by Scott Fenton, 21-Jan-2025.) |
Ref | Expression |
---|---|
addsfo | ⊢ +s :( No × No )–onto→ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsf 27850 | . 2 ⊢ +s :( No × No )⟶ No | |
2 | 0sno 27710 | . . . . 5 ⊢ 0s ∈ No | |
3 | opelxpi 5706 | . . . . 5 ⊢ ((𝑧 ∈ No ∧ 0s ∈ No ) → ⟨𝑧, 0s ⟩ ∈ ( No × No )) | |
4 | 2, 3 | mpan2 688 | . . . 4 ⊢ (𝑧 ∈ No → ⟨𝑧, 0s ⟩ ∈ ( No × No )) |
5 | addsrid 27832 | . . . . 5 ⊢ (𝑧 ∈ No → (𝑧 +s 0s ) = 𝑧) | |
6 | 5 | eqcomd 2732 | . . . 4 ⊢ (𝑧 ∈ No → 𝑧 = (𝑧 +s 0s )) |
7 | fveq2 6884 | . . . . . 6 ⊢ (𝑥 = ⟨𝑧, 0s ⟩ → ( +s ‘𝑥) = ( +s ‘⟨𝑧, 0s ⟩)) | |
8 | df-ov 7407 | . . . . . 6 ⊢ (𝑧 +s 0s ) = ( +s ‘⟨𝑧, 0s ⟩) | |
9 | 7, 8 | eqtr4di 2784 | . . . . 5 ⊢ (𝑥 = ⟨𝑧, 0s ⟩ → ( +s ‘𝑥) = (𝑧 +s 0s )) |
10 | 9 | rspceeqv 3628 | . . . 4 ⊢ ((⟨𝑧, 0s ⟩ ∈ ( No × No ) ∧ 𝑧 = (𝑧 +s 0s )) → ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥)) |
11 | 4, 6, 10 | syl2anc 583 | . . 3 ⊢ (𝑧 ∈ No → ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥)) |
12 | 11 | rgen 3057 | . 2 ⊢ ∀𝑧 ∈ No ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥) |
13 | dffo3 7096 | . 2 ⊢ ( +s :( No × No )–onto→ No ↔ ( +s :( No × No )⟶ No ∧ ∀𝑧 ∈ No ∃𝑥 ∈ ( No × No )𝑧 = ( +s ‘𝑥))) | |
14 | 1, 12, 13 | mpbir2an 708 | 1 ⊢ +s :( No × No )–onto→ No |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ⟨cop 4629 × cxp 5667 ⟶wf 6532 –onto→wfo 6534 ‘cfv 6536 (class class class)co 7404 No csur 27524 0s c0s 27706 +s cadds 27827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-1o 8464 df-2o 8465 df-nadd 8664 df-no 27527 df-slt 27528 df-bday 27529 df-sslt 27665 df-scut 27667 df-0s 27708 df-made 27725 df-old 27726 df-left 27728 df-right 27729 df-norec2 27817 df-adds 27828 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |