MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsub Structured version   Visualization version   GIF version

Theorem addsub 11471
Description: Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
addsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴𝐶) + 𝐵))

Proof of Theorem addsub
StepHypRef Expression
1 addcom 11400 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
21oveq1d 7424 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐵 + 𝐴) − 𝐶))
323adant3 1133 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐵 + 𝐴) − 𝐶))
4 addsubass 11470 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐶) = (𝐵 + (𝐴𝐶)))
543com12 1124 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐴) − 𝐶) = (𝐵 + (𝐴𝐶)))
6 subcl 11459 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
7 addcom 11400 . . . . 5 ((𝐵 ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ) → (𝐵 + (𝐴𝐶)) = ((𝐴𝐶) + 𝐵))
86, 7sylan2 594 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → (𝐵 + (𝐴𝐶)) = ((𝐴𝐶) + 𝐵))
983impb 1116 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + (𝐴𝐶)) = ((𝐴𝐶) + 𝐵))
1093com12 1124 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + (𝐴𝐶)) = ((𝐴𝐶) + 𝐵))
113, 5, 103eqtrd 2777 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴𝐶) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  (class class class)co 7409  cc 11108   + caddc 11113  cmin 11444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-ltxr 11253  df-sub 11446
This theorem is referenced by:  subadd23  11472  2addsub  11474  nnpcan  11483  subsub  11490  npncan3  11498  addsub4  11503  addsubi  11552  addsubd  11592  muleqadd  11858  nnaddm1cl  12619  modsumfzodifsn  13909  expubnd  14142  cvgrat  15829  omeo  16309
  Copyright terms: Public domain W3C validator