MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaddm1cl Structured version   Visualization version   GIF version

Theorem nnaddm1cl 12619
Description: Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnaddm1cl ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ)

Proof of Theorem nnaddm1cl
StepHypRef Expression
1 nncn 12220 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
2 nncn 12220 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
3 ax-1cn 11168 . . . 4 1 ∈ ℂ
4 addsub 11471 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 𝐵) − 1) = ((𝐴 − 1) + 𝐵))
53, 4mp3an3 1451 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 1) = ((𝐴 − 1) + 𝐵))
61, 2, 5syl2an 597 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) = ((𝐴 − 1) + 𝐵))
7 nnm1nn0 12513 . . 3 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
8 nn0nnaddcl 12503 . . 3 (((𝐴 − 1) ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 − 1) + 𝐵) ∈ ℕ)
97, 8sylan 581 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 − 1) + 𝐵) ∈ ℕ)
106, 9eqeltrd 2834 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  (class class class)co 7409  cc 11108  1c1 11111   + caddc 11113  cmin 11444  cn 12212  0cn0 12472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-ltxr 11253  df-sub 11446  df-nn 12213  df-n0 12473
This theorem is referenced by:  aaliou3lem8  25858
  Copyright terms: Public domain W3C validator