![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsubass | Structured version Visualization version GIF version |
Description: Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addsubass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) | |
2 | subcl 11489 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) | |
3 | 2 | 3adant1 1127 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) |
4 | simp3 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
5 | 1, 3, 4 | addassd 11266 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + (𝐵 − 𝐶)) + 𝐶) = (𝐴 + ((𝐵 − 𝐶) + 𝐶))) |
6 | npcan 11499 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 − 𝐶) + 𝐶) = 𝐵) | |
7 | 6 | 3adant1 1127 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 − 𝐶) + 𝐶) = 𝐵) |
8 | 7 | oveq2d 7432 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + ((𝐵 − 𝐶) + 𝐶)) = (𝐴 + 𝐵)) |
9 | 5, 8 | eqtrd 2765 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + (𝐵 − 𝐶)) + 𝐶) = (𝐴 + 𝐵)) |
10 | 9 | oveq1d 7431 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + (𝐵 − 𝐶)) + 𝐶) − 𝐶) = ((𝐴 + 𝐵) − 𝐶)) |
11 | 1, 3 | addcld 11263 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 − 𝐶)) ∈ ℂ) |
12 | pncan 11496 | . . 3 ⊢ (((𝐴 + (𝐵 − 𝐶)) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + (𝐵 − 𝐶)) + 𝐶) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) | |
13 | 11, 4, 12 | syl2anc 582 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + (𝐵 − 𝐶)) + 𝐶) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
14 | 10, 13 | eqtr3d 2767 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 (class class class)co 7416 ℂcc 11136 + caddc 11141 − cmin 11474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-ltxr 11283 df-sub 11476 |
This theorem is referenced by: addsub 11501 subadd23 11502 addsubeq4 11505 npncan 11511 subsub 11520 subsub3 11522 addsub4 11533 negsub 11538 addsubassi 11581 addsubassd 11621 zeo 12678 fzen2 13966 fsumcube 16036 odd2np1 16317 psdmul 22098 chtub 27163 axcontlem2 28820 numclwlk2lem2f 30231 dnibndlem3 36012 stoweidlem26 45477 |
Copyright terms: Public domain | W3C validator |