Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negsub | Structured version Visualization version GIF version |
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11208 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
2 | 1 | oveq2i 7286 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))) |
4 | 0cn 10967 | . . 3 ⊢ 0 ∈ ℂ | |
5 | addsubass 11231 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | |
6 | 4, 5 | mp3an2 1448 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) |
7 | simpl 483 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
8 | 7 | addid1d 11175 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
9 | 8 | oveq1d 7290 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 − 𝐵)) |
10 | 3, 6, 9 | 3eqtr2d 2784 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 0cc0 10871 + caddc 10874 − cmin 11205 -cneg 11206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 df-neg 11208 |
This theorem is referenced by: negdi2 11279 negsubdi2 11280 resubcli 11283 resubcl 11285 negsubi 11299 negsubd 11338 submul2 11415 addneg1mul 11417 mulsub 11418 divsubdir 11669 difgtsumgt 12286 elz2 12337 zsubcl 12362 qsubcl 12708 rexsub 12967 fzsubel 13292 ceim1l 13567 modcyc2 13627 negmod 13636 modsumfzodifsn 13664 expsub 13831 binom2sub 13935 seqshft 14796 resub 14838 imsub 14846 cjsub 14860 cjreim 14871 absdiflt 15029 absdifle 15030 abs2dif2 15045 subcn2 15304 bpoly2 15767 bpoly3 15768 efsub 15809 efi4p 15846 sinsub 15877 cossub 15878 demoivreALT 15910 dvdssub 16013 modgcd 16240 gzsubcl 16641 psgnunilem2 19103 cnfldsub 20626 itg1sub 24874 plyremlem 25464 sineq0 25680 logneg2 25770 ang180lem2 25960 asinsin 26042 atanneg 26057 atancj 26060 atanlogadd 26064 atanlogsublem 26065 atanlogsub 26066 2efiatan 26068 tanatan 26069 cosatan 26071 atans2 26081 dvatan 26085 zetacvg 26164 wilthlem1 26217 wilthlem2 26218 basellem8 26237 lgsvalmod 26464 cnnvm 29044 cncph 29181 hvsubdistr2 29412 lnfnsubi 30408 subfacval2 33149 itg2addnclem3 35830 lcmineqlem1 40037 2xp3dxp2ge1d 40162 pellexlem6 40656 pell14qrdich 40691 rmxm1 40756 rmym1 40757 addsubeq0 44788 omoeALTV 45137 omeoALTV 45138 emoo 45156 emee 45158 zlmodzxzequap 45840 flsubz 45863 |
Copyright terms: Public domain | W3C validator |