| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsub | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11347 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
| 2 | 1 | oveq2i 7357 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)) |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))) |
| 4 | 0cn 11104 | . . 3 ⊢ 0 ∈ ℂ | |
| 5 | addsubass 11370 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | |
| 6 | 4, 5 | mp3an2 1451 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) |
| 7 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 8 | 7 | addridd 11313 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
| 9 | 8 | oveq1d 7361 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 − 𝐵)) |
| 10 | 3, 6, 9 | 3eqtr2d 2772 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 0cc0 11006 + caddc 11009 − cmin 11344 -cneg 11345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 |
| This theorem is referenced by: negdi2 11419 negsubdi2 11420 resubcli 11423 resubcl 11425 negsubi 11439 negsubd 11478 submul2 11557 addneg1mul 11559 mulsub 11560 divsubdir 11815 difgtsumgt 12434 elz2 12486 zsubcl 12514 qsubcl 12866 rexsub 13132 fzsubel 13460 ceim1l 13751 modcyc2 13811 negmod 13823 modsumfzodifsn 13851 expsub 14017 binom2sub 14127 seqshft 14992 resub 15034 imsub 15042 cjsub 15056 cjreim 15067 absdiflt 15225 absdifle 15226 abs2dif2 15241 subcn2 15502 bpoly2 15964 bpoly3 15965 efsub 16009 efi4p 16046 sinsub 16077 cossub 16078 demoivreALT 16110 difmod0 16198 dvdssub 16215 modgcd 16443 gzsubcl 16852 psgnunilem2 19407 cnfldsub 21334 itg1sub 25637 plyremlem 26239 sineq0 26460 logneg2 26551 ang180lem2 26747 asinsin 26829 atanneg 26844 atancj 26847 atanlogadd 26851 atanlogsublem 26852 atanlogsub 26853 2efiatan 26855 tanatan 26856 cosatan 26858 atans2 26868 dvatan 26872 zetacvg 26952 wilthlem1 27005 wilthlem2 27006 basellem8 27025 lgsvalmod 27254 cnnvm 30662 cncph 30799 hvsubdistr2 31030 lnfnsubi 32026 subfacval2 35231 itg2addnclem3 37712 lcmineqlem1 42121 pellexlem6 42926 pell14qrdich 42961 rmxm1 43026 rmym1 43027 addsubeq0 47395 omoeALTV 47784 omeoALTV 47785 emoo 47803 emee 47805 zlmodzxzequap 48599 flsubz 48622 |
| Copyright terms: Public domain | W3C validator |