| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsub | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11408 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
| 2 | 1 | oveq2i 7398 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)) |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))) |
| 4 | 0cn 11166 | . . 3 ⊢ 0 ∈ ℂ | |
| 5 | addsubass 11431 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | |
| 6 | 4, 5 | mp3an2 1451 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) |
| 7 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 8 | 7 | addridd 11374 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
| 9 | 8 | oveq1d 7402 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 − 𝐵)) |
| 10 | 3, 6, 9 | 3eqtr2d 2770 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 0cc0 11068 + caddc 11071 − cmin 11405 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: negdi2 11480 negsubdi2 11481 resubcli 11484 resubcl 11486 negsubi 11500 negsubd 11539 submul2 11618 addneg1mul 11620 mulsub 11621 divsubdir 11876 difgtsumgt 12495 elz2 12547 zsubcl 12575 qsubcl 12927 rexsub 13193 fzsubel 13521 ceim1l 13809 modcyc2 13869 negmod 13881 modsumfzodifsn 13909 expsub 14075 binom2sub 14185 seqshft 15051 resub 15093 imsub 15101 cjsub 15115 cjreim 15126 absdiflt 15284 absdifle 15285 abs2dif2 15300 subcn2 15561 bpoly2 16023 bpoly3 16024 efsub 16068 efi4p 16105 sinsub 16136 cossub 16137 demoivreALT 16169 difmod0 16257 dvdssub 16274 modgcd 16502 gzsubcl 16911 psgnunilem2 19425 cnfldsub 21309 itg1sub 25610 plyremlem 26212 sineq0 26433 logneg2 26524 ang180lem2 26720 asinsin 26802 atanneg 26817 atancj 26820 atanlogadd 26824 atanlogsublem 26825 atanlogsub 26826 2efiatan 26828 tanatan 26829 cosatan 26831 atans2 26841 dvatan 26845 zetacvg 26925 wilthlem1 26978 wilthlem2 26979 basellem8 26998 lgsvalmod 27227 cnnvm 30611 cncph 30748 hvsubdistr2 30979 lnfnsubi 31975 subfacval2 35174 itg2addnclem3 37667 lcmineqlem1 42017 pellexlem6 42822 pell14qrdich 42857 rmxm1 42923 rmym1 42924 addsubeq0 47297 omoeALTV 47686 omeoALTV 47687 emoo 47705 emee 47707 zlmodzxzequap 48488 flsubz 48511 |
| Copyright terms: Public domain | W3C validator |