![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsub | Structured version Visualization version GIF version |
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11492 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
2 | 1 | oveq2i 7441 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))) |
4 | 0cn 11250 | . . 3 ⊢ 0 ∈ ℂ | |
5 | addsubass 11515 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | |
6 | 4, 5 | mp3an2 1448 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) |
7 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
8 | 7 | addridd 11458 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
9 | 8 | oveq1d 7445 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 − 𝐵)) |
10 | 3, 6, 9 | 3eqtr2d 2780 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 0cc0 11152 + caddc 11155 − cmin 11489 -cneg 11490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 df-sub 11491 df-neg 11492 |
This theorem is referenced by: negdi2 11564 negsubdi2 11565 resubcli 11568 resubcl 11570 negsubi 11584 negsubd 11623 submul2 11700 addneg1mul 11702 mulsub 11703 divsubdir 11958 difgtsumgt 12576 elz2 12628 zsubcl 12656 qsubcl 13007 rexsub 13271 fzsubel 13596 ceim1l 13883 modcyc2 13943 negmod 13953 modsumfzodifsn 13981 expsub 14147 binom2sub 14255 seqshft 15120 resub 15162 imsub 15170 cjsub 15184 cjreim 15195 absdiflt 15352 absdifle 15353 abs2dif2 15368 subcn2 15627 bpoly2 16089 bpoly3 16090 efsub 16132 efi4p 16169 sinsub 16200 cossub 16201 demoivreALT 16233 dvdssub 16337 modgcd 16565 gzsubcl 16973 psgnunilem2 19527 cnfldsub 21427 itg1sub 25758 plyremlem 26360 sineq0 26580 logneg2 26671 ang180lem2 26867 asinsin 26949 atanneg 26964 atancj 26967 atanlogadd 26971 atanlogsublem 26972 atanlogsub 26973 2efiatan 26975 tanatan 26976 cosatan 26978 atans2 26988 dvatan 26992 zetacvg 27072 wilthlem1 27125 wilthlem2 27126 basellem8 27145 lgsvalmod 27374 cnnvm 30710 cncph 30847 hvsubdistr2 31078 lnfnsubi 32074 subfacval2 35171 itg2addnclem3 37659 lcmineqlem1 42010 2xp3dxp2ge1d 42222 pellexlem6 42821 pell14qrdich 42856 rmxm1 42922 rmym1 42923 addsubeq0 47245 omoeALTV 47609 omeoALTV 47610 emoo 47628 emee 47630 zlmodzxzequap 48344 flsubz 48367 |
Copyright terms: Public domain | W3C validator |