| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsub | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11415 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
| 2 | 1 | oveq2i 7401 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)) |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))) |
| 4 | 0cn 11173 | . . 3 ⊢ 0 ∈ ℂ | |
| 5 | addsubass 11438 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | |
| 6 | 4, 5 | mp3an2 1451 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) |
| 7 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 8 | 7 | addridd 11381 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
| 9 | 8 | oveq1d 7405 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 − 𝐵)) |
| 10 | 3, 6, 9 | 3eqtr2d 2771 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 0cc0 11075 + caddc 11078 − cmin 11412 -cneg 11413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: negdi2 11487 negsubdi2 11488 resubcli 11491 resubcl 11493 negsubi 11507 negsubd 11546 submul2 11625 addneg1mul 11627 mulsub 11628 divsubdir 11883 difgtsumgt 12502 elz2 12554 zsubcl 12582 qsubcl 12934 rexsub 13200 fzsubel 13528 ceim1l 13816 modcyc2 13876 negmod 13888 modsumfzodifsn 13916 expsub 14082 binom2sub 14192 seqshft 15058 resub 15100 imsub 15108 cjsub 15122 cjreim 15133 absdiflt 15291 absdifle 15292 abs2dif2 15307 subcn2 15568 bpoly2 16030 bpoly3 16031 efsub 16075 efi4p 16112 sinsub 16143 cossub 16144 demoivreALT 16176 difmod0 16264 dvdssub 16281 modgcd 16509 gzsubcl 16918 psgnunilem2 19432 cnfldsub 21316 itg1sub 25617 plyremlem 26219 sineq0 26440 logneg2 26531 ang180lem2 26727 asinsin 26809 atanneg 26824 atancj 26827 atanlogadd 26831 atanlogsublem 26832 atanlogsub 26833 2efiatan 26835 tanatan 26836 cosatan 26838 atans2 26848 dvatan 26852 zetacvg 26932 wilthlem1 26985 wilthlem2 26986 basellem8 27005 lgsvalmod 27234 cnnvm 30618 cncph 30755 hvsubdistr2 30986 lnfnsubi 31982 subfacval2 35181 itg2addnclem3 37674 lcmineqlem1 42024 pellexlem6 42829 pell14qrdich 42864 rmxm1 42930 rmym1 42931 addsubeq0 47301 omoeALTV 47690 omeoALTV 47691 emoo 47709 emee 47711 zlmodzxzequap 48492 flsubz 48515 |
| Copyright terms: Public domain | W3C validator |