Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negsub | Structured version Visualization version GIF version |
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11138 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
2 | 1 | oveq2i 7266 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))) |
4 | 0cn 10898 | . . 3 ⊢ 0 ∈ ℂ | |
5 | addsubass 11161 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | |
6 | 4, 5 | mp3an2 1447 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) |
7 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
8 | 7 | addid1d 11105 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
9 | 8 | oveq1d 7270 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 − 𝐵)) |
10 | 3, 6, 9 | 3eqtr2d 2784 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 0cc0 10802 + caddc 10805 − cmin 11135 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 |
This theorem is referenced by: negdi2 11209 negsubdi2 11210 resubcli 11213 resubcl 11215 negsubi 11229 negsubd 11268 submul2 11345 addneg1mul 11347 mulsub 11348 divsubdir 11599 difgtsumgt 12216 elz2 12267 zsubcl 12292 qsubcl 12637 rexsub 12896 fzsubel 13221 ceim1l 13495 modcyc2 13555 negmod 13564 modsumfzodifsn 13592 expsub 13759 binom2sub 13863 seqshft 14724 resub 14766 imsub 14774 cjsub 14788 cjreim 14799 absdiflt 14957 absdifle 14958 abs2dif2 14973 subcn2 15232 bpoly2 15695 bpoly3 15696 efsub 15737 efi4p 15774 sinsub 15805 cossub 15806 demoivreALT 15838 dvdssub 15941 modgcd 16168 gzsubcl 16569 psgnunilem2 19018 cnfldsub 20538 itg1sub 24779 plyremlem 25369 sineq0 25585 logneg2 25675 ang180lem2 25865 asinsin 25947 atanneg 25962 atancj 25965 atanlogadd 25969 atanlogsublem 25970 atanlogsub 25971 2efiatan 25973 tanatan 25974 cosatan 25976 atans2 25986 dvatan 25990 zetacvg 26069 wilthlem1 26122 wilthlem2 26123 basellem8 26142 lgsvalmod 26369 cnnvm 28945 cncph 29082 hvsubdistr2 29313 lnfnsubi 30309 subfacval2 33049 itg2addnclem3 35757 lcmineqlem1 39965 2xp3dxp2ge1d 40090 pellexlem6 40572 pell14qrdich 40607 rmxm1 40672 rmym1 40673 addsubeq0 44676 omoeALTV 45025 omeoALTV 45026 emoo 45044 emee 45046 zlmodzxzequap 45728 flsubz 45751 |
Copyright terms: Public domain | W3C validator |