MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsub Structured version   Visualization version   GIF version

Theorem negsub 11269
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
negsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))

Proof of Theorem negsub
StepHypRef Expression
1 df-neg 11208 . . . 4 -𝐵 = (0 − 𝐵)
21oveq2i 7286 . . 3 (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))
32a1i 11 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)))
4 0cn 10967 . . 3 0 ∈ ℂ
5 addsubass 11231 . . 3 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵)))
64, 5mp3an2 1448 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵)))
7 simpl 483 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
87addid1d 11175 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴)
98oveq1d 7290 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴𝐵))
103, 6, 93eqtr2d 2784 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869  0cc0 10871   + caddc 10874  cmin 11205  -cneg 11206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208
This theorem is referenced by:  negdi2  11279  negsubdi2  11280  resubcli  11283  resubcl  11285  negsubi  11299  negsubd  11338  submul2  11415  addneg1mul  11417  mulsub  11418  divsubdir  11669  difgtsumgt  12286  elz2  12337  zsubcl  12362  qsubcl  12708  rexsub  12967  fzsubel  13292  ceim1l  13567  modcyc2  13627  negmod  13636  modsumfzodifsn  13664  expsub  13831  binom2sub  13935  seqshft  14796  resub  14838  imsub  14846  cjsub  14860  cjreim  14871  absdiflt  15029  absdifle  15030  abs2dif2  15045  subcn2  15304  bpoly2  15767  bpoly3  15768  efsub  15809  efi4p  15846  sinsub  15877  cossub  15878  demoivreALT  15910  dvdssub  16013  modgcd  16240  gzsubcl  16641  psgnunilem2  19103  cnfldsub  20626  itg1sub  24874  plyremlem  25464  sineq0  25680  logneg2  25770  ang180lem2  25960  asinsin  26042  atanneg  26057  atancj  26060  atanlogadd  26064  atanlogsublem  26065  atanlogsub  26066  2efiatan  26068  tanatan  26069  cosatan  26071  atans2  26081  dvatan  26085  zetacvg  26164  wilthlem1  26217  wilthlem2  26218  basellem8  26237  lgsvalmod  26464  cnnvm  29044  cncph  29181  hvsubdistr2  29412  lnfnsubi  30408  subfacval2  33149  itg2addnclem3  35830  lcmineqlem1  40037  2xp3dxp2ge1d  40162  pellexlem6  40656  pell14qrdich  40691  rmxm1  40756  rmym1  40757  addsubeq0  44788  omoeALTV  45137  omeoALTV  45138  emoo  45156  emee  45158  zlmodzxzequap  45840  flsubz  45863
  Copyright terms: Public domain W3C validator