Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negsub | Structured version Visualization version GIF version |
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 10911 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
2 | 1 | oveq2i 7161 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))) |
4 | 0cn 10671 | . . 3 ⊢ 0 ∈ ℂ | |
5 | addsubass 10934 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | |
6 | 4, 5 | mp3an2 1446 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) |
7 | simpl 486 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
8 | 7 | addid1d 10878 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
9 | 8 | oveq1d 7165 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 − 𝐵)) |
10 | 3, 6, 9 | 3eqtr2d 2799 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 (class class class)co 7150 ℂcc 10573 0cc0 10575 + caddc 10578 − cmin 10908 -cneg 10909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-ltxr 10718 df-sub 10910 df-neg 10911 |
This theorem is referenced by: negdi2 10982 negsubdi2 10983 resubcli 10986 resubcl 10988 negsubi 11002 negsubd 11041 submul2 11118 addneg1mul 11120 mulsub 11121 divsubdir 11372 difgtsumgt 11987 elz2 12038 zsubcl 12063 qsubcl 12408 rexsub 12667 fzsubel 12992 ceim1l 13264 modcyc2 13324 negmod 13333 modsumfzodifsn 13361 expsub 13527 binom2sub 13631 seqshft 14492 resub 14534 imsub 14542 cjsub 14556 cjreim 14567 absdiflt 14725 absdifle 14726 abs2dif2 14741 subcn2 14999 bpoly2 15459 bpoly3 15460 efsub 15501 efi4p 15538 sinsub 15569 cossub 15570 demoivreALT 15602 dvdssub 15705 modgcd 15931 gzsubcl 16331 psgnunilem2 18690 cnfldsub 20194 itg1sub 24409 plyremlem 24999 sineq0 25215 logneg2 25305 ang180lem2 25495 asinsin 25577 atanneg 25592 atancj 25595 atanlogadd 25599 atanlogsublem 25600 atanlogsub 25601 2efiatan 25603 tanatan 25604 cosatan 25606 atans2 25616 dvatan 25620 zetacvg 25699 wilthlem1 25752 wilthlem2 25753 basellem8 25772 lgsvalmod 25999 cnnvm 28564 cncph 28701 hvsubdistr2 28932 lnfnsubi 29928 subfacval2 32665 itg2addnclem3 35390 lcmineqlem1 39596 2xp3dxp2ge1d 39684 pellexlem6 40148 pell14qrdich 40183 rmxm1 40248 rmym1 40249 addsubeq0 44221 omoeALTV 44570 omeoALTV 44571 emoo 44589 emee 44591 zlmodzxzequap 45273 flsubz 45296 |
Copyright terms: Public domain | W3C validator |