| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsub | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11386 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
| 2 | 1 | oveq2i 7380 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)) |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))) |
| 4 | 0cn 11144 | . . 3 ⊢ 0 ∈ ℂ | |
| 5 | addsubass 11409 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | |
| 6 | 4, 5 | mp3an2 1451 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) |
| 7 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 8 | 7 | addridd 11352 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
| 9 | 8 | oveq1d 7384 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 − 𝐵)) |
| 10 | 3, 6, 9 | 3eqtr2d 2770 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11044 0cc0 11046 + caddc 11049 − cmin 11383 -cneg 11384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-ltxr 11191 df-sub 11385 df-neg 11386 |
| This theorem is referenced by: negdi2 11458 negsubdi2 11459 resubcli 11462 resubcl 11464 negsubi 11478 negsubd 11517 submul2 11596 addneg1mul 11598 mulsub 11599 divsubdir 11854 difgtsumgt 12473 elz2 12525 zsubcl 12553 qsubcl 12905 rexsub 13171 fzsubel 13499 ceim1l 13787 modcyc2 13847 negmod 13859 modsumfzodifsn 13887 expsub 14053 binom2sub 14163 seqshft 15028 resub 15070 imsub 15078 cjsub 15092 cjreim 15103 absdiflt 15261 absdifle 15262 abs2dif2 15277 subcn2 15538 bpoly2 16000 bpoly3 16001 efsub 16045 efi4p 16082 sinsub 16113 cossub 16114 demoivreALT 16146 difmod0 16234 dvdssub 16251 modgcd 16479 gzsubcl 16888 psgnunilem2 19410 cnfldsub 21340 itg1sub 25644 plyremlem 26246 sineq0 26467 logneg2 26558 ang180lem2 26754 asinsin 26836 atanneg 26851 atancj 26854 atanlogadd 26858 atanlogsublem 26859 atanlogsub 26860 2efiatan 26862 tanatan 26863 cosatan 26865 atans2 26875 dvatan 26879 zetacvg 26959 wilthlem1 27012 wilthlem2 27013 basellem8 27032 lgsvalmod 27261 cnnvm 30662 cncph 30799 hvsubdistr2 31030 lnfnsubi 32026 subfacval2 35168 itg2addnclem3 37661 lcmineqlem1 42011 pellexlem6 42816 pell14qrdich 42851 rmxm1 42917 rmym1 42918 addsubeq0 47291 omoeALTV 47680 omeoALTV 47681 emoo 47699 emee 47701 zlmodzxzequap 48482 flsubz 48505 |
| Copyright terms: Public domain | W3C validator |