![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsub | Structured version Visualization version GIF version |
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11523 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
2 | 1 | oveq2i 7459 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))) |
4 | 0cn 11282 | . . 3 ⊢ 0 ∈ ℂ | |
5 | addsubass 11546 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | |
6 | 4, 5 | mp3an2 1449 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) |
7 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
8 | 7 | addridd 11490 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
9 | 8 | oveq1d 7463 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 − 𝐵)) |
10 | 3, 6, 9 | 3eqtr2d 2786 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 + caddc 11187 − cmin 11520 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 |
This theorem is referenced by: negdi2 11594 negsubdi2 11595 resubcli 11598 resubcl 11600 negsubi 11614 negsubd 11653 submul2 11730 addneg1mul 11732 mulsub 11733 divsubdir 11988 difgtsumgt 12606 elz2 12657 zsubcl 12685 qsubcl 13033 rexsub 13295 fzsubel 13620 ceim1l 13898 modcyc2 13958 negmod 13967 modsumfzodifsn 13995 expsub 14161 binom2sub 14269 seqshft 15134 resub 15176 imsub 15184 cjsub 15198 cjreim 15209 absdiflt 15366 absdifle 15367 abs2dif2 15382 subcn2 15641 bpoly2 16105 bpoly3 16106 efsub 16148 efi4p 16185 sinsub 16216 cossub 16217 demoivreALT 16249 dvdssub 16352 modgcd 16579 gzsubcl 16987 psgnunilem2 19537 cnfldsub 21433 itg1sub 25764 plyremlem 26364 sineq0 26584 logneg2 26675 ang180lem2 26871 asinsin 26953 atanneg 26968 atancj 26971 atanlogadd 26975 atanlogsublem 26976 atanlogsub 26977 2efiatan 26979 tanatan 26980 cosatan 26982 atans2 26992 dvatan 26996 zetacvg 27076 wilthlem1 27129 wilthlem2 27130 basellem8 27149 lgsvalmod 27378 cnnvm 30714 cncph 30851 hvsubdistr2 31082 lnfnsubi 32078 subfacval2 35155 itg2addnclem3 37633 lcmineqlem1 41986 2xp3dxp2ge1d 42198 pellexlem6 42790 pell14qrdich 42825 rmxm1 42891 rmym1 42892 addsubeq0 47211 omoeALTV 47559 omeoALTV 47560 emoo 47578 emee 47580 zlmodzxzequap 48228 flsubz 48251 |
Copyright terms: Public domain | W3C validator |