| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsub | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11350 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
| 2 | 1 | oveq2i 7360 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)) |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))) |
| 4 | 0cn 11107 | . . 3 ⊢ 0 ∈ ℂ | |
| 5 | addsubass 11373 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | |
| 6 | 4, 5 | mp3an2 1451 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) |
| 7 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 8 | 7 | addridd 11316 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
| 9 | 8 | oveq1d 7364 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 − 𝐵)) |
| 10 | 3, 6, 9 | 3eqtr2d 2770 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 0cc0 11009 + caddc 11012 − cmin 11347 -cneg 11348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 |
| This theorem is referenced by: negdi2 11422 negsubdi2 11423 resubcli 11426 resubcl 11428 negsubi 11442 negsubd 11481 submul2 11560 addneg1mul 11562 mulsub 11563 divsubdir 11818 difgtsumgt 12437 elz2 12489 zsubcl 12517 qsubcl 12869 rexsub 13135 fzsubel 13463 ceim1l 13751 modcyc2 13811 negmod 13823 modsumfzodifsn 13851 expsub 14017 binom2sub 14127 seqshft 14992 resub 15034 imsub 15042 cjsub 15056 cjreim 15067 absdiflt 15225 absdifle 15226 abs2dif2 15241 subcn2 15502 bpoly2 15964 bpoly3 15965 efsub 16009 efi4p 16046 sinsub 16077 cossub 16078 demoivreALT 16110 difmod0 16198 dvdssub 16215 modgcd 16443 gzsubcl 16852 psgnunilem2 19374 cnfldsub 21304 itg1sub 25608 plyremlem 26210 sineq0 26431 logneg2 26522 ang180lem2 26718 asinsin 26800 atanneg 26815 atancj 26818 atanlogadd 26822 atanlogsublem 26823 atanlogsub 26824 2efiatan 26826 tanatan 26827 cosatan 26829 atans2 26839 dvatan 26843 zetacvg 26923 wilthlem1 26976 wilthlem2 26977 basellem8 26996 lgsvalmod 27225 cnnvm 30630 cncph 30767 hvsubdistr2 30998 lnfnsubi 31994 subfacval2 35180 itg2addnclem3 37673 lcmineqlem1 42022 pellexlem6 42827 pell14qrdich 42862 rmxm1 42927 rmym1 42928 addsubeq0 47300 omoeALTV 47689 omeoALTV 47690 emoo 47708 emee 47710 zlmodzxzequap 48504 flsubz 48527 |
| Copyright terms: Public domain | W3C validator |