![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsub | Structured version Visualization version GIF version |
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11443 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
2 | 1 | oveq2i 7416 | . . 3 ⊢ (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵)) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 + (0 − 𝐵))) |
4 | 0cn 11202 | . . 3 ⊢ 0 ∈ ℂ | |
5 | addsubass 11466 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) | |
6 | 4, 5 | mp3an2 1449 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 + (0 − 𝐵))) |
7 | simpl 483 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
8 | 7 | addridd 11410 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
9 | 8 | oveq1d 7420 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 0) − 𝐵) = (𝐴 − 𝐵)) |
10 | 3, 6, 9 | 3eqtr2d 2778 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 (class class class)co 7405 ℂcc 11104 0cc0 11106 + caddc 11109 − cmin 11440 -cneg 11441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-neg 11443 |
This theorem is referenced by: negdi2 11514 negsubdi2 11515 resubcli 11518 resubcl 11520 negsubi 11534 negsubd 11573 submul2 11650 addneg1mul 11652 mulsub 11653 divsubdir 11904 difgtsumgt 12521 elz2 12572 zsubcl 12600 qsubcl 12948 rexsub 13208 fzsubel 13533 ceim1l 13808 modcyc2 13868 negmod 13877 modsumfzodifsn 13905 expsub 14072 binom2sub 14179 seqshft 15028 resub 15070 imsub 15078 cjsub 15092 cjreim 15103 absdiflt 15260 absdifle 15261 abs2dif2 15276 subcn2 15535 bpoly2 15997 bpoly3 15998 efsub 16039 efi4p 16076 sinsub 16107 cossub 16108 demoivreALT 16140 dvdssub 16243 modgcd 16470 gzsubcl 16869 psgnunilem2 19357 cnfldsub 20965 itg1sub 25218 plyremlem 25808 sineq0 26024 logneg2 26114 ang180lem2 26304 asinsin 26386 atanneg 26401 atancj 26404 atanlogadd 26408 atanlogsublem 26409 atanlogsub 26410 2efiatan 26412 tanatan 26413 cosatan 26415 atans2 26425 dvatan 26429 zetacvg 26508 wilthlem1 26561 wilthlem2 26562 basellem8 26581 lgsvalmod 26808 cnnvm 29922 cncph 30059 hvsubdistr2 30290 lnfnsubi 31286 subfacval2 34166 itg2addnclem3 36529 lcmineqlem1 40882 2xp3dxp2ge1d 41010 pellexlem6 41557 pell14qrdich 41592 rmxm1 41658 rmym1 41659 addsubeq0 45990 omoeALTV 46339 omeoALTV 46340 emoo 46358 emee 46360 zlmodzxzequap 47133 flsubz 47156 |
Copyright terms: Public domain | W3C validator |