Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negsubdi2d | Structured version Visualization version GIF version |
Description: Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
negsubdi2d | ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | negsubdi2 11289 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7284 ℂcc 10878 − cmin 11214 -cneg 11215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-ltxr 11023 df-sub 11216 df-neg 11217 |
This theorem is referenced by: cjneg 14867 icodiamlt 15156 geo2sum2 15595 bpoly3 15777 sinneg 15864 sinhval 15872 vitalilem1 24781 vitalilem2 24782 itgneg 24977 dvrec 25128 dvferm2lem 25159 dvfsumge 25195 dvfsumlem2 25200 dvfsum2 25207 ftc1lem5 25213 ftc2ditg 25219 plyeq0lem 25380 efif1olem2 25708 ang180 25973 isosctrlem3 25979 isosctr 25980 affineequiv3 25984 angpieqvdlem 25987 chordthmlem 25991 mcubic 26006 quart1lem 26014 quartlem1 26016 atanneg 26066 atancj 26069 efiatan 26071 atanlogsub 26075 efiatan2 26076 2efiatan 26077 atantan 26082 atanbndlem 26084 pntrsumo1 26722 pntrlog2bndlem2 26735 pntrlog2bndlem4 26737 pntibndlem2 26748 brbtwn2 27282 colinearalglem4 27286 axsegconlem9 27302 dipcj 29085 bcm1n 31125 signsplypnf 32538 fsum2dsub 32596 dnibndlem11 34677 irrdifflemf 35505 itg2addnclem3 35839 itg2gt0cn 35841 congsym 40797 cvgdvgrat 41938 negsubdi3d 42839 lptre2pt 43188 liminflimsupclim 43355 stoweidlem13 43561 dirkertrigeqlem2 43647 fourierdlem26 43681 fourierdlem89 43743 fourierdlem90 43744 fourierdlem91 43745 fourierdlem107 43761 etransclem23 43805 sharhght 44392 sigaradd 44393 cevathlem2 44395 fmtnorec3 45011 1subrec1sub 46062 eenglngeehlnmlem1 46094 eenglngeehlnmlem2 46095 rrx2linest 46099 rrx2linest2 46101 line2 46109 itsclinecirc0b 46131 |
Copyright terms: Public domain | W3C validator |