Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negsubdi2d | Structured version Visualization version GIF version |
Description: Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
negsubdi2d | ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | negsubdi2 11210 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 − cmin 11135 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 |
This theorem is referenced by: cjneg 14786 icodiamlt 15075 geo2sum2 15514 bpoly3 15696 sinneg 15783 sinhval 15791 vitalilem1 24677 vitalilem2 24678 itgneg 24873 dvrec 25024 dvferm2lem 25055 dvfsumge 25091 dvfsumlem2 25096 dvfsum2 25103 ftc1lem5 25109 ftc2ditg 25115 plyeq0lem 25276 efif1olem2 25604 ang180 25869 isosctrlem3 25875 isosctr 25876 affineequiv3 25880 angpieqvdlem 25883 chordthmlem 25887 mcubic 25902 quart1lem 25910 quartlem1 25912 atanneg 25962 atancj 25965 efiatan 25967 atanlogsub 25971 efiatan2 25972 2efiatan 25973 atantan 25978 atanbndlem 25980 pntrsumo1 26618 pntrlog2bndlem2 26631 pntrlog2bndlem4 26633 pntibndlem2 26644 brbtwn2 27176 colinearalglem4 27180 axsegconlem9 27196 dipcj 28977 bcm1n 31018 signsplypnf 32429 fsum2dsub 32487 dnibndlem11 34595 irrdifflemf 35423 itg2addnclem3 35757 itg2gt0cn 35759 congsym 40706 cvgdvgrat 41820 negsubdi3d 42722 lptre2pt 43071 liminflimsupclim 43238 stoweidlem13 43444 dirkertrigeqlem2 43530 fourierdlem26 43564 fourierdlem89 43626 fourierdlem90 43627 fourierdlem91 43628 fourierdlem107 43644 etransclem23 43688 sharhght 44268 sigaradd 44269 cevathlem2 44271 fmtnorec3 44888 1subrec1sub 45939 eenglngeehlnmlem1 45971 eenglngeehlnmlem2 45972 rrx2linest 45976 rrx2linest2 45978 line2 45986 itsclinecirc0b 46008 |
Copyright terms: Public domain | W3C validator |