Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > negsubdi2d | Structured version Visualization version GIF version |
Description: Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
negsubdi2d | ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | negsubdi2 11373 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 (class class class)co 7329 ℂcc 10962 − cmin 11298 -cneg 11299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-ltxr 11107 df-sub 11300 df-neg 11301 |
This theorem is referenced by: cjneg 14949 icodiamlt 15238 geo2sum2 15677 bpoly3 15859 sinneg 15946 sinhval 15954 vitalilem1 24870 vitalilem2 24871 itgneg 25066 dvrec 25217 dvferm2lem 25248 dvfsumge 25284 dvfsumlem2 25289 dvfsum2 25296 ftc1lem5 25302 ftc2ditg 25308 plyeq0lem 25469 efif1olem2 25797 ang180 26062 isosctrlem3 26068 isosctr 26069 affineequiv3 26073 angpieqvdlem 26076 chordthmlem 26080 mcubic 26095 quart1lem 26103 quartlem1 26105 atanneg 26155 atancj 26158 efiatan 26160 atanlogsub 26164 efiatan2 26165 2efiatan 26166 atantan 26171 atanbndlem 26173 pntrsumo1 26811 pntrlog2bndlem2 26824 pntrlog2bndlem4 26826 pntibndlem2 26837 brbtwn2 27503 colinearalglem4 27507 axsegconlem9 27523 dipcj 29305 bcm1n 31344 signsplypnf 32770 fsum2dsub 32828 dnibndlem11 34759 irrdifflemf 35594 itg2addnclem3 35928 itg2gt0cn 35930 congsym 41041 cvgdvgrat 42241 negsubdi3d 43156 lptre2pt 43506 liminflimsupclim 43673 stoweidlem13 43879 dirkertrigeqlem2 43965 fourierdlem26 43999 fourierdlem89 44061 fourierdlem90 44062 fourierdlem91 44063 fourierdlem107 44079 etransclem23 44123 sharhght 44721 sigaradd 44722 cevathlem2 44724 fmtnorec3 45340 1subrec1sub 46391 eenglngeehlnmlem1 46423 eenglngeehlnmlem2 46424 rrx2linest 46428 rrx2linest2 46430 line2 46438 itsclinecirc0b 46460 |
Copyright terms: Public domain | W3C validator |