| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulneg2d | Structured version Visualization version GIF version | ||
| Description: Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| mulnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulneg2d | ⊢ (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | mulneg2 11563 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7354 ℂcc 11013 · cmul 11020 -cneg 11354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-ltxr 11160 df-sub 11355 df-neg 11356 |
| This theorem is referenced by: prodge0rd 13003 expmulz 14019 discr 14151 sincossq 16089 oexpneg 16260 mulgass 19028 mulgmodid 19030 zringlpirlem3 21405 pjthlem1 25367 dvfsum2 25971 vieta1 26250 advlogexp 26594 logccv 26602 cxpmul2z 26630 abscxpbnd 26693 isosctrlem3 26760 affineequiv3 26765 dcubic1lem 26783 mcubic 26787 amgmlem 26930 ftalem5 27017 pntrlog2bndlem2 27519 brbtwn2 28887 colinearalglem4 28891 pjhthlem1 31375 constrresqrtcl 33813 fwddifnp1 36232 areacirclem1 37771 3cubeslem3r 42807 pellexlem6 42954 pell1234qrreccl 42974 pell14qrdich 42989 rmxyneg 43040 rmxm1 43054 ltmulneg 45517 cosknegpi 45994 itgsinexplem1 46079 dirkerper 46221 sqwvfoura 46353 etransclem46 46405 fmtnorec3 47675 oexpnegALTV 47804 oexpnegnz 47805 2zrngagrp 48376 itschlc0xyqsol 48895 amgmwlem 49930 |
| Copyright terms: Public domain | W3C validator |