MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulneg2d Structured version   Visualization version   GIF version

Theorem mulneg2d 11720
Description: Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1d.1 (𝜑𝐴 ∈ ℂ)
mulnegd.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
mulneg2d (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵))

Proof of Theorem mulneg2d
StepHypRef Expression
1 mulm1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 mulnegd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 mulneg2 11703 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
41, 2, 3syl2anc 582 1 (𝜑 → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  (class class class)co 7426  cc 11158   · cmul 11165  -cneg 11497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-po 5596  df-so 5597  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-ltxr 11305  df-sub 11498  df-neg 11499
This theorem is referenced by:  prodge0rd  13137  expmulz  14130  discr  14259  sincossq  16180  oexpneg  16349  mulgass  19107  mulgmodid  19109  zringlpirlem3  21456  pjthlem1  25459  dvfsum2  26063  vieta1  26343  advlogexp  26685  logccv  26693  cxpmul2z  26721  abscxpbnd  26784  isosctrlem3  26851  affineequiv3  26856  dcubic1lem  26874  mcubic  26878  amgmlem  27021  ftalem5  27108  pntrlog2bndlem2  27610  brbtwn2  28842  colinearalglem4  28846  pjhthlem1  31327  fwddifnp1  35991  areacirclem1  37411  3cubeslem3r  42362  pellexlem6  42509  pell1234qrreccl  42529  pell14qrdich  42544  rmxyneg  42596  rmxm1  42610  ltmulneg  45025  cosknegpi  45508  itgsinexplem1  45593  dirkerper  45735  sqwvfoura  45867  etransclem46  45919  fmtnorec3  47138  oexpnegALTV  47267  oexpnegnz  47268  2zrngagrp  47644  itschlc0xyqsol  48173  amgmwlem  48568
  Copyright terms: Public domain W3C validator