Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod4i2 Structured version   Visualization version   GIF version

Theorem atmod4i2 39264
Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-Mar-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atmod4i2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑃 𝑌) 𝑋) = ((𝑃 𝑋) 𝑌))

Proof of Theorem atmod4i2
StepHypRef Expression
1 hllat 38759 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1131 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ Lat)
3 simp21 1204 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑃𝐴)
4 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
5 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atbase 38685 . . . . 5 (𝑃𝐴𝑃𝐵)
73, 6syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑃𝐵)
8 simp23 1206 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑌𝐵)
9 atmod.m . . . . 5 = (meet‘𝐾)
104, 9latmcl 18417 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑌𝐵) → (𝑃 𝑌) ∈ 𝐵)
112, 7, 8, 10syl3anc 1369 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑃 𝑌) ∈ 𝐵)
12 simp22 1205 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑋𝐵)
13 atmod.j . . . 4 = (join‘𝐾)
144, 13latjcom 18424 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑃 𝑌) 𝑋) = (𝑋 (𝑃 𝑌)))
152, 11, 12, 14syl3anc 1369 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑃 𝑌) 𝑋) = (𝑋 (𝑃 𝑌)))
16 atmod.l . . 3 = (le‘𝐾)
174, 16, 13, 9, 5atmod1i2 39256 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (𝑃 𝑌)) = ((𝑋 𝑃) 𝑌))
184, 13latjcom 18424 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) = (𝑃 𝑋))
192, 12, 7, 18syl3anc 1369 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑃) = (𝑃 𝑋))
2019oveq1d 7429 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑋 𝑃) 𝑌) = ((𝑃 𝑋) 𝑌))
2115, 17, 203eqtrd 2771 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑃 𝑌) 𝑋) = ((𝑃 𝑋) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5142  cfv 6542  (class class class)co 7414  Basecbs 17165  lecple 17225  joincjn 18288  meetcmee 18289  Latclat 18408  Atomscatm 38659  HLchlt 38746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-proset 18272  df-poset 18290  df-plt 18307  df-lub 18323  df-glb 18324  df-join 18325  df-meet 18326  df-p0 18402  df-lat 18409  df-clat 18476  df-oposet 38572  df-ol 38574  df-oml 38575  df-covers 38662  df-ats 38663  df-atl 38694  df-cvlat 38718  df-hlat 38747  df-psubsp 38900  df-pmap 38901  df-padd 39193
This theorem is referenced by:  lhp2at0  39429  lhpelim  39434  cdleme2  39625  cdleme35d  39849  cdlemeg46frv  39922  cdlemg2fv2  39997  cdlemg2m  40001  cdlemg10bALTN  40033  cdlemh2  40213  cdlemk9  40236  cdlemk9bN  40237
  Copyright terms: Public domain W3C validator