Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod2i2 Structured version   Visualization version   GIF version

Theorem atmod2i2 39981
Description: Version of modular law pmod2iN 39968 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atmod2i2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌)))

Proof of Theorem atmod2i2
StepHypRef Expression
1 hllat 39482 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ Lat)
3 simp21 1207 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑃𝐴)
4 atmod.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 atmod.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 39408 . . . . . 6 (𝑃𝐴𝑃𝐵)
73, 6syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑃𝐵)
8 simp23 1209 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑌𝐵)
9 atmod.j . . . . . 6 = (join‘𝐾)
104, 9latjcom 18355 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑌𝐵) → (𝑃 𝑌) = (𝑌 𝑃))
112, 7, 8, 10syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑃 𝑌) = (𝑌 𝑃))
1211oveq1d 7367 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑃 𝑌) 𝑋) = ((𝑌 𝑃) 𝑋))
13 simp22 1208 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑋𝐵)
144, 9latjcl 18347 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑌𝐵) → (𝑃 𝑌) ∈ 𝐵)
152, 7, 8, 14syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑃 𝑌) ∈ 𝐵)
16 atmod.m . . . . 5 = (meet‘𝐾)
174, 16latmcom 18371 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑌) ∈ 𝐵) → (𝑋 (𝑃 𝑌)) = ((𝑃 𝑌) 𝑋))
182, 13, 15, 17syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑋 (𝑃 𝑌)) = ((𝑃 𝑌) 𝑋))
19 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝐾 ∈ HL)
20 simp3 1138 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → 𝑌 𝑋)
21 atmod.l . . . . 5 = (le‘𝐾)
224, 21, 9, 16, 5atmod1i2 39978 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑌𝐵𝑋𝐵) ∧ 𝑌 𝑋) → (𝑌 (𝑃 𝑋)) = ((𝑌 𝑃) 𝑋))
2319, 3, 8, 13, 20, 22syl131anc 1385 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑌 (𝑃 𝑋)) = ((𝑌 𝑃) 𝑋))
2412, 18, 233eqtr4d 2778 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑋 (𝑃 𝑌)) = (𝑌 (𝑃 𝑋)))
254, 16latmcl 18348 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋) ∈ 𝐵)
262, 7, 13, 25syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑃 𝑋) ∈ 𝐵)
274, 9latjcom 18355 . . 3 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (𝑃 𝑋) ∈ 𝐵) → (𝑌 (𝑃 𝑋)) = ((𝑃 𝑋) 𝑌))
282, 8, 26, 27syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑌 (𝑃 𝑋)) = ((𝑃 𝑋) 𝑌))
294, 16latmcom 18371 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋) = (𝑋 𝑃))
302, 7, 13, 29syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → (𝑃 𝑋) = (𝑋 𝑃))
3130oveq1d 7367 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑃 𝑋) 𝑌) = ((𝑋 𝑃) 𝑌))
3224, 28, 313eqtrrd 2773 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  joincjn 18219  meetcmee 18220  Latclat 18339  Atomscatm 39382  HLchlt 39469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-lat 18340  df-clat 18407  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-psubsp 39622  df-pmap 39623  df-padd 39915
This theorem is referenced by:  llnexchb2lem  39987  dalawlem2  39991  dalawlem3  39992  dalawlem11  40000  dalawlem12  40001  cdleme15b  40394
  Copyright terms: Public domain W3C validator