Proof of Theorem atmod2i2
Step | Hyp | Ref
| Expression |
1 | | hllat 37114 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
2 | 1 | 3ad2ant1 1135 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → 𝐾 ∈ Lat) |
3 | | simp21 1208 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → 𝑃 ∈ 𝐴) |
4 | | atmod.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
5 | | atmod.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 4, 5 | atbase 37040 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
7 | 3, 6 | syl 17 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → 𝑃 ∈ 𝐵) |
8 | | simp23 1210 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → 𝑌 ∈ 𝐵) |
9 | | atmod.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
10 | 4, 9 | latjcom 17953 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃 ∨ 𝑌) = (𝑌 ∨ 𝑃)) |
11 | 2, 7, 8, 10 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → (𝑃 ∨ 𝑌) = (𝑌 ∨ 𝑃)) |
12 | 11 | oveq1d 7228 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → ((𝑃 ∨ 𝑌) ∧ 𝑋) = ((𝑌 ∨ 𝑃) ∧ 𝑋)) |
13 | | simp22 1209 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → 𝑋 ∈ 𝐵) |
14 | 4, 9 | latjcl 17945 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃 ∨ 𝑌) ∈ 𝐵) |
15 | 2, 7, 8, 14 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → (𝑃 ∨ 𝑌) ∈ 𝐵) |
16 | | atmod.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
17 | 4, 16 | latmcom 17969 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑌) ∈ 𝐵) → (𝑋 ∧ (𝑃 ∨ 𝑌)) = ((𝑃 ∨ 𝑌) ∧ 𝑋)) |
18 | 2, 13, 15, 17 | syl3anc 1373 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → (𝑋 ∧ (𝑃 ∨ 𝑌)) = ((𝑃 ∨ 𝑌) ∧ 𝑋)) |
19 | | simp1 1138 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → 𝐾 ∈ HL) |
20 | | simp3 1140 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → 𝑌 ≤ 𝑋) |
21 | | atmod.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
22 | 4, 21, 9, 16, 5 | atmod1i2 37610 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → (𝑌 ∨ (𝑃 ∧ 𝑋)) = ((𝑌 ∨ 𝑃) ∧ 𝑋)) |
23 | 19, 3, 8, 13, 20, 22 | syl131anc 1385 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → (𝑌 ∨ (𝑃 ∧ 𝑋)) = ((𝑌 ∨ 𝑃) ∧ 𝑋)) |
24 | 12, 18, 23 | 3eqtr4d 2787 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → (𝑋 ∧ (𝑃 ∨ 𝑌)) = (𝑌 ∨ (𝑃 ∧ 𝑋))) |
25 | 4, 16 | latmcl 17946 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∧ 𝑋) ∈ 𝐵) |
26 | 2, 7, 13, 25 | syl3anc 1373 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → (𝑃 ∧ 𝑋) ∈ 𝐵) |
27 | 4, 9 | latjcom 17953 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ (𝑃 ∧ 𝑋) ∈ 𝐵) → (𝑌 ∨ (𝑃 ∧ 𝑋)) = ((𝑃 ∧ 𝑋) ∨ 𝑌)) |
28 | 2, 8, 26, 27 | syl3anc 1373 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → (𝑌 ∨ (𝑃 ∧ 𝑋)) = ((𝑃 ∧ 𝑋) ∨ 𝑌)) |
29 | 4, 16 | latmcom 17969 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∧ 𝑋) = (𝑋 ∧ 𝑃)) |
30 | 2, 7, 13, 29 | syl3anc 1373 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → (𝑃 ∧ 𝑋) = (𝑋 ∧ 𝑃)) |
31 | 30 | oveq1d 7228 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → ((𝑃 ∧ 𝑋) ∨ 𝑌) = ((𝑋 ∧ 𝑃) ∨ 𝑌)) |
32 | 24, 28, 31 | 3eqtrrd 2782 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ 𝑃) ∨ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑌))) |