MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bday11on Structured version   Visualization version   GIF version

Theorem bday11on 28218
Description: The birthday function is one-to-one over the surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025.)
Assertion
Ref Expression
bday11on ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐴 = 𝐵)

Proof of Theorem bday11on
StepHypRef Expression
1 fveq2 6876 . . . . 5 (( bday 𝐴) = ( bday 𝐵) → ( O ‘( bday 𝐴)) = ( O ‘( bday 𝐵)))
213ad2ant3 1135 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → ( O ‘( bday 𝐴)) = ( O ‘( bday 𝐵)))
3 onsleft 28213 . . . . 5 (𝐴 ∈ Ons → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
433ad2ant1 1133 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
5 onsleft 28213 . . . . 5 (𝐵 ∈ Ons → ( O ‘( bday 𝐵)) = ( L ‘𝐵))
653ad2ant2 1134 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → ( O ‘( bday 𝐵)) = ( L ‘𝐵))
72, 4, 63eqtr3d 2778 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → ( L ‘𝐴) = ( L ‘𝐵))
87oveq1d 7420 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) |s ∅) = (( L ‘𝐵) |s ∅))
9 onscutleft 28216 . . 3 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
1093ad2ant1 1133 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐴 = (( L ‘𝐴) |s ∅))
11 onscutleft 28216 . . 3 (𝐵 ∈ Ons𝐵 = (( L ‘𝐵) |s ∅))
12113ad2ant2 1134 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐵 = (( L ‘𝐵) |s ∅))
138, 10, 123eqtr4d 2780 1 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  c0 4308  cfv 6531  (class class class)co 7405   bday cbday 27605   |s cscut 27746   O cold 27803   L cleft 27805  Onscons 28204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sslt 27745  df-scut 27747  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-ons 28205
This theorem is referenced by:  onsiso  28221  bdayn0sf1o  28311
  Copyright terms: Public domain W3C validator