MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bday11on Structured version   Visualization version   GIF version

Theorem bday11on 28202
Description: The birthday function is one-to-one over the surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025.)
Assertion
Ref Expression
bday11on ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐴 = 𝐵)

Proof of Theorem bday11on
StepHypRef Expression
1 fveq2 6822 . . . . 5 (( bday 𝐴) = ( bday 𝐵) → ( O ‘( bday 𝐴)) = ( O ‘( bday 𝐵)))
213ad2ant3 1135 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → ( O ‘( bday 𝐴)) = ( O ‘( bday 𝐵)))
3 onsleft 28197 . . . . 5 (𝐴 ∈ Ons → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
433ad2ant1 1133 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
5 onsleft 28197 . . . . 5 (𝐵 ∈ Ons → ( O ‘( bday 𝐵)) = ( L ‘𝐵))
653ad2ant2 1134 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → ( O ‘( bday 𝐵)) = ( L ‘𝐵))
72, 4, 63eqtr3d 2774 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → ( L ‘𝐴) = ( L ‘𝐵))
87oveq1d 7361 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) |s ∅) = (( L ‘𝐵) |s ∅))
9 onscutleft 28200 . . 3 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
1093ad2ant1 1133 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐴 = (( L ‘𝐴) |s ∅))
11 onscutleft 28200 . . 3 (𝐵 ∈ Ons𝐵 = (( L ‘𝐵) |s ∅))
12113ad2ant2 1134 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐵 = (( L ‘𝐵) |s ∅))
138, 10, 123eqtr4d 2776 1 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  c0 4280  cfv 6481  (class class class)co 7346   bday cbday 27580   |s cscut 27722   O cold 27784   L cleft 27786  Onscons 28188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sslt 27721  df-scut 27723  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-ons 28189
This theorem is referenced by:  onsiso  28205  bdayn0sf1o  28295
  Copyright terms: Public domain W3C validator