MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bday11on Structured version   Visualization version   GIF version

Theorem bday11on 28173
Description: The birthday function is one-to-one over the surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025.)
Assertion
Ref Expression
bday11on ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐴 = 𝐵)

Proof of Theorem bday11on
StepHypRef Expression
1 fveq2 6822 . . . . 5 (( bday 𝐴) = ( bday 𝐵) → ( O ‘( bday 𝐴)) = ( O ‘( bday 𝐵)))
213ad2ant3 1135 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → ( O ‘( bday 𝐴)) = ( O ‘( bday 𝐵)))
3 onsleft 28168 . . . . 5 (𝐴 ∈ Ons → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
433ad2ant1 1133 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
5 onsleft 28168 . . . . 5 (𝐵 ∈ Ons → ( O ‘( bday 𝐵)) = ( L ‘𝐵))
653ad2ant2 1134 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → ( O ‘( bday 𝐵)) = ( L ‘𝐵))
72, 4, 63eqtr3d 2772 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → ( L ‘𝐴) = ( L ‘𝐵))
87oveq1d 7364 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → (( L ‘𝐴) |s ∅) = (( L ‘𝐵) |s ∅))
9 onscutleft 28171 . . 3 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
1093ad2ant1 1133 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐴 = (( L ‘𝐴) |s ∅))
11 onscutleft 28171 . . 3 (𝐵 ∈ Ons𝐵 = (( L ‘𝐵) |s ∅))
12113ad2ant2 1134 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐵 = (( L ‘𝐵) |s ∅))
138, 10, 123eqtr4d 2774 1 ((𝐴 ∈ Ons𝐵 ∈ Ons ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  c0 4284  cfv 6482  (class class class)co 7349   bday cbday 27551   |s cscut 27693   O cold 27755   L cleft 27757  Onscons 28159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554  df-sslt 27692  df-scut 27694  df-made 27759  df-old 27760  df-left 27762  df-right 27763  df-ons 28160
This theorem is referenced by:  onsiso  28176  bdayn0sf1o  28266
  Copyright terms: Public domain W3C validator