| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bday11on | Structured version Visualization version GIF version | ||
| Description: The birthday function is one-to-one over the surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| bday11on | ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘𝐴) = ( bday ‘𝐵)) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . 5 ⊢ (( bday ‘𝐴) = ( bday ‘𝐵) → ( O ‘( bday ‘𝐴)) = ( O ‘( bday ‘𝐵))) | |
| 2 | 1 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘𝐴) = ( bday ‘𝐵)) → ( O ‘( bday ‘𝐴)) = ( O ‘( bday ‘𝐵))) |
| 3 | onsleft 28168 | . . . . 5 ⊢ (𝐴 ∈ Ons → ( O ‘( bday ‘𝐴)) = ( L ‘𝐴)) | |
| 4 | 3 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘𝐴) = ( bday ‘𝐵)) → ( O ‘( bday ‘𝐴)) = ( L ‘𝐴)) |
| 5 | onsleft 28168 | . . . . 5 ⊢ (𝐵 ∈ Ons → ( O ‘( bday ‘𝐵)) = ( L ‘𝐵)) | |
| 6 | 5 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘𝐴) = ( bday ‘𝐵)) → ( O ‘( bday ‘𝐵)) = ( L ‘𝐵)) |
| 7 | 2, 4, 6 | 3eqtr3d 2772 | . . 3 ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘𝐴) = ( bday ‘𝐵)) → ( L ‘𝐴) = ( L ‘𝐵)) |
| 8 | 7 | oveq1d 7364 | . 2 ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘𝐴) = ( bday ‘𝐵)) → (( L ‘𝐴) |s ∅) = (( L ‘𝐵) |s ∅)) |
| 9 | onscutleft 28171 | . . 3 ⊢ (𝐴 ∈ Ons → 𝐴 = (( L ‘𝐴) |s ∅)) | |
| 10 | 9 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘𝐴) = ( bday ‘𝐵)) → 𝐴 = (( L ‘𝐴) |s ∅)) |
| 11 | onscutleft 28171 | . . 3 ⊢ (𝐵 ∈ Ons → 𝐵 = (( L ‘𝐵) |s ∅)) | |
| 12 | 11 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘𝐴) = ( bday ‘𝐵)) → 𝐵 = (( L ‘𝐵) |s ∅)) |
| 13 | 8, 10, 12 | 3eqtr4d 2774 | 1 ⊢ ((𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ∧ ( bday ‘𝐴) = ( bday ‘𝐵)) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∅c0 4284 ‘cfv 6482 (class class class)co 7349 bday cbday 27551 |s cscut 27693 O cold 27755 L cleft 27757 Onscons 28159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-bday 27554 df-sslt 27692 df-scut 27694 df-made 27759 df-old 27760 df-left 27762 df-right 27763 df-ons 28160 |
| This theorem is referenced by: onsiso 28176 bdayn0sf1o 28266 |
| Copyright terms: Public domain | W3C validator |