MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onscutlt Structured version   Visualization version   GIF version

Theorem onscutlt 28205
Description: A surreal ordinal is the simplest number greater than all previous surreal ordinals. Theorem 15 of [Conway] p. 28. (Contributed by Scott Fenton, 4-Nov-2025.)
Assertion
Ref Expression
onscutlt (𝐴 ∈ Ons𝐴 = ({𝑥 ∈ Ons𝑥 <s 𝐴} |s ∅))
Distinct variable group:   𝑥,𝐴

Proof of Theorem onscutlt
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onsno 28196 . . . . 5 (𝐴 ∈ Ons𝐴 No )
2 sltonex 28203 . . . . 5 (𝐴 No → {𝑥 ∈ Ons𝑥 <s 𝐴} ∈ V)
31, 2syl 17 . . . 4 (𝐴 ∈ Ons → {𝑥 ∈ Ons𝑥 <s 𝐴} ∈ V)
4 snexg 5385 . . . 4 (𝐴 ∈ Ons → {𝐴} ∈ V)
5 ssrab2 4039 . . . . . 6 {𝑥 ∈ Ons𝑥 <s 𝐴} ⊆ Ons
6 onssno 28195 . . . . . 6 Ons No
75, 6sstri 3953 . . . . 5 {𝑥 ∈ Ons𝑥 <s 𝐴} ⊆ No
87a1i 11 . . . 4 (𝐴 ∈ Ons → {𝑥 ∈ Ons𝑥 <s 𝐴} ⊆ No )
91snssd 4769 . . . 4 (𝐴 ∈ Ons → {𝐴} ⊆ No )
10 breq1 5105 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 <s 𝐴𝑦 <s 𝐴))
1110elrab 3656 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ Ons𝑥 <s 𝐴} ↔ (𝑦 ∈ Ons𝑦 <s 𝐴))
1211simprbi 496 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ Ons𝑥 <s 𝐴} → 𝑦 <s 𝐴)
13 velsn 4601 . . . . . . . 8 (𝑧 ∈ {𝐴} ↔ 𝑧 = 𝐴)
14 breq2 5106 . . . . . . . 8 (𝑧 = 𝐴 → (𝑦 <s 𝑧𝑦 <s 𝐴))
1513, 14sylbi 217 . . . . . . 7 (𝑧 ∈ {𝐴} → (𝑦 <s 𝑧𝑦 <s 𝐴))
1612, 15syl5ibrcom 247 . . . . . 6 (𝑦 ∈ {𝑥 ∈ Ons𝑥 <s 𝐴} → (𝑧 ∈ {𝐴} → 𝑦 <s 𝑧))
1716imp 406 . . . . 5 ((𝑦 ∈ {𝑥 ∈ Ons𝑥 <s 𝐴} ∧ 𝑧 ∈ {𝐴}) → 𝑦 <s 𝑧)
18173adant1 1130 . . . 4 ((𝐴 ∈ Ons𝑦 ∈ {𝑥 ∈ Ons𝑥 <s 𝐴} ∧ 𝑧 ∈ {𝐴}) → 𝑦 <s 𝑧)
193, 4, 8, 9, 18ssltd 27737 . . 3 (𝐴 ∈ Ons → {𝑥 ∈ Ons𝑥 <s 𝐴} <<s {𝐴})
20 snelpwi 5398 . . . 4 (𝐴 No → {𝐴} ∈ 𝒫 No )
21 nulssgt 27744 . . . 4 ({𝐴} ∈ 𝒫 No → {𝐴} <<s ∅)
221, 20, 213syl 18 . . 3 (𝐴 ∈ Ons → {𝐴} <<s ∅)
23 ssltsep 27736 . . . . . . 7 ({𝑥 ∈ Ons𝑥 <s 𝐴} <<s {𝑦} → ∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝐴}∀𝑤 ∈ {𝑦}𝑧 <s 𝑤)
24 vex 3448 . . . . . . . . . 10 𝑦 ∈ V
25 breq2 5106 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑧 <s 𝑤𝑧 <s 𝑦))
2624, 25ralsn 4641 . . . . . . . . 9 (∀𝑤 ∈ {𝑦}𝑧 <s 𝑤𝑧 <s 𝑦)
2726ralbii 3075 . . . . . . . 8 (∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝐴}∀𝑤 ∈ {𝑦}𝑧 <s 𝑤 ↔ ∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝐴}𝑧 <s 𝑦)
28 breq1 5105 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 <s 𝐴𝑧 <s 𝐴))
2928ralrab 3662 . . . . . . . 8 (∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝐴}𝑧 <s 𝑦 ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝐴𝑧 <s 𝑦))
3027, 29bitri 275 . . . . . . 7 (∀𝑧 ∈ {𝑥 ∈ Ons𝑥 <s 𝐴}∀𝑤 ∈ {𝑦}𝑧 <s 𝑤 ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝐴𝑧 <s 𝑦))
3123, 30sylib 218 . . . . . 6 ({𝑥 ∈ Ons𝑥 <s 𝐴} <<s {𝑦} → ∀𝑧 ∈ Ons (𝑧 <s 𝐴𝑧 <s 𝑦))
32 fvex 6853 . . . . . . . . . . . . 13 ( L ‘𝑦) ∈ V
33 fvex 6853 . . . . . . . . . . . . 13 ( R ‘𝑦) ∈ V
3432, 33unex 7700 . . . . . . . . . . . 12 (( L ‘𝑦) ∪ ( R ‘𝑦)) ∈ V
3534a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → (( L ‘𝑦) ∪ ( R ‘𝑦)) ∈ V)
36 leftssno 27830 . . . . . . . . . . . . 13 ( L ‘𝑦) ⊆ No
37 rightssno 27831 . . . . . . . . . . . . 13 ( R ‘𝑦) ⊆ No
3836, 37unssi 4150 . . . . . . . . . . . 12 (( L ‘𝑦) ∪ ( R ‘𝑦)) ⊆ No
3938a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → (( L ‘𝑦) ∪ ( R ‘𝑦)) ⊆ No )
40 eqidd 2730 . . . . . . . . . . 11 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) = ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅))
4135, 39, 40elons2d 28200 . . . . . . . . . 10 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ Ons)
4234elpw 4563 . . . . . . . . . . . . . . . . 17 ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∈ 𝒫 No ↔ (( L ‘𝑦) ∪ ( R ‘𝑦)) ⊆ No )
4338, 42mpbir 231 . . . . . . . . . . . . . . . 16 (( L ‘𝑦) ∪ ( R ‘𝑦)) ∈ 𝒫 No
44 nulssgt 27744 . . . . . . . . . . . . . . . 16 ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∈ 𝒫 No → (( L ‘𝑦) ∪ ( R ‘𝑦)) <<s ∅)
4543, 44mp1i 13 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → (( L ‘𝑦) ∪ ( R ‘𝑦)) <<s ∅)
46 un0 4353 . . . . . . . . . . . . . . . . . 18 ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ ∅) = (( L ‘𝑦) ∪ ( R ‘𝑦))
47 lrold 27846 . . . . . . . . . . . . . . . . . 18 (( L ‘𝑦) ∪ ( R ‘𝑦)) = ( O ‘( bday 𝑦))
4846, 47eqtri 2752 . . . . . . . . . . . . . . . . 17 ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ ∅) = ( O ‘( bday 𝑦))
4948imaeq2i 6018 . . . . . . . . . . . . . . . 16 ( bday “ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ ∅)) = ( bday “ ( O ‘( bday 𝑦)))
50 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) ∧ 𝑧 ∈ ( O ‘( bday 𝑦))) → 𝑧 ∈ ( O ‘( bday 𝑦)))
51 bdayelon 27721 . . . . . . . . . . . . . . . . . . . 20 ( bday 𝑦) ∈ On
52 oldssno 27806 . . . . . . . . . . . . . . . . . . . . . 22 ( O ‘( bday 𝑦)) ⊆ No
5352sseli 3939 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ( O ‘( bday 𝑦)) → 𝑧 No )
5453adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) ∧ 𝑧 ∈ ( O ‘( bday 𝑦))) → 𝑧 No )
55 oldbday 27850 . . . . . . . . . . . . . . . . . . . 20 ((( bday 𝑦) ∈ On ∧ 𝑧 No ) → (𝑧 ∈ ( O ‘( bday 𝑦)) ↔ ( bday 𝑧) ∈ ( bday 𝑦)))
5651, 54, 55sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) ∧ 𝑧 ∈ ( O ‘( bday 𝑦))) → (𝑧 ∈ ( O ‘( bday 𝑦)) ↔ ( bday 𝑧) ∈ ( bday 𝑦)))
5750, 56mpbid 232 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) ∧ 𝑧 ∈ ( O ‘( bday 𝑦))) → ( bday 𝑧) ∈ ( bday 𝑦))
5857ralrimiva 3125 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ∀𝑧 ∈ ( O ‘( bday 𝑦))( bday 𝑧) ∈ ( bday 𝑦))
59 bdayfun 27717 . . . . . . . . . . . . . . . . . 18 Fun bday
60 bdaydm 27719 . . . . . . . . . . . . . . . . . . 19 dom bday = No
6152, 60sseqtrri 3993 . . . . . . . . . . . . . . . . . 18 ( O ‘( bday 𝑦)) ⊆ dom bday
62 funimass4 6907 . . . . . . . . . . . . . . . . . 18 ((Fun bday ∧ ( O ‘( bday 𝑦)) ⊆ dom bday ) → (( bday “ ( O ‘( bday 𝑦))) ⊆ ( bday 𝑦) ↔ ∀𝑧 ∈ ( O ‘( bday 𝑦))( bday 𝑧) ∈ ( bday 𝑦)))
6359, 61, 62mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday “ ( O ‘( bday 𝑦))) ⊆ ( bday 𝑦) ↔ ∀𝑧 ∈ ( O ‘( bday 𝑦))( bday 𝑧) ∈ ( bday 𝑦))
6458, 63sylibr 234 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ( bday “ ( O ‘( bday 𝑦))) ⊆ ( bday 𝑦))
6549, 64eqsstrid 3982 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ( bday “ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ ∅)) ⊆ ( bday 𝑦))
66 scutbdaybnd 27761 . . . . . . . . . . . . . . . 16 (((( L ‘𝑦) ∪ ( R ‘𝑦)) <<s ∅ ∧ ( bday 𝑦) ∈ On ∧ ( bday “ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ ∅)) ⊆ ( bday 𝑦)) → ( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ⊆ ( bday 𝑦))
6751, 66mp3an2 1451 . . . . . . . . . . . . . . 15 (((( L ‘𝑦) ∪ ( R ‘𝑦)) <<s ∅ ∧ ( bday “ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ ∅)) ⊆ ( bday 𝑦)) → ( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ⊆ ( bday 𝑦))
6845, 65, 67syl2anc 584 . . . . . . . . . . . . . 14 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ⊆ ( bday 𝑦))
69 simpr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ( bday 𝑦) ∈ ( bday 𝐴))
70 bdayelon 27721 . . . . . . . . . . . . . . 15 ( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ On
71 bdayelon 27721 . . . . . . . . . . . . . . 15 ( bday 𝐴) ∈ On
72 ontr2 6368 . . . . . . . . . . . . . . 15 ((( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ On ∧ ( bday 𝐴) ∈ On) → ((( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ⊆ ( bday 𝑦) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ ( bday 𝐴)))
7370, 71, 72mp2an 692 . . . . . . . . . . . . . 14 ((( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ⊆ ( bday 𝑦) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ ( bday 𝐴))
7468, 69, 73syl2anc 584 . . . . . . . . . . . . 13 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ ( bday 𝐴))
7545scutcld 27749 . . . . . . . . . . . . . 14 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ No )
76 oldbday 27850 . . . . . . . . . . . . . 14 ((( bday 𝐴) ∈ On ∧ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ No ) → (((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ ( O ‘( bday 𝐴)) ↔ ( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ ( bday 𝐴)))
7771, 75, 76sylancr 587 . . . . . . . . . . . . 13 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → (((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ ( O ‘( bday 𝐴)) ↔ ( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ ( bday 𝐴)))
7874, 77mpbird 257 . . . . . . . . . . . 12 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ ( O ‘( bday 𝐴)))
79 elons 28194 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Ons ↔ (𝐴 No ∧ ( R ‘𝐴) = ∅))
8079simprbi 496 . . . . . . . . . . . . . . 15 (𝐴 ∈ Ons → ( R ‘𝐴) = ∅)
8180ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ( R ‘𝐴) = ∅)
8281uneq2d 4127 . . . . . . . . . . . . 13 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (( L ‘𝐴) ∪ ∅))
83 lrold 27846 . . . . . . . . . . . . 13 (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday 𝐴))
84 un0 4353 . . . . . . . . . . . . 13 (( L ‘𝐴) ∪ ∅) = ( L ‘𝐴)
8582, 83, 843eqtr3g 2787 . . . . . . . . . . . 12 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
8678, 85eleqtrd 2830 . . . . . . . . . . 11 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ ( L ‘𝐴))
87 leftlt 27812 . . . . . . . . . . 11 (((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ ( L ‘𝐴) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝐴)
8886, 87syl 17 . . . . . . . . . 10 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝐴)
89 simplr 768 . . . . . . . . . . . . . 14 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → 𝑦 No )
90 slerflex 27708 . . . . . . . . . . . . . . 15 (𝑦 No 𝑦 ≤s 𝑦)
91 lrcut 27853 . . . . . . . . . . . . . . 15 (𝑦 No → (( L ‘𝑦) |s ( R ‘𝑦)) = 𝑦)
9290, 91breqtrrd 5130 . . . . . . . . . . . . . 14 (𝑦 No 𝑦 ≤s (( L ‘𝑦) |s ( R ‘𝑦)))
9389, 92syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → 𝑦 ≤s (( L ‘𝑦) |s ( R ‘𝑦)))
94 uneq2 4121 . . . . . . . . . . . . . . . 16 (( R ‘𝑦) = ∅ → (( L ‘𝑦) ∪ ( R ‘𝑦)) = (( L ‘𝑦) ∪ ∅))
95 un0 4353 . . . . . . . . . . . . . . . 16 (( L ‘𝑦) ∪ ∅) = ( L ‘𝑦)
9694, 95eqtrdi 2780 . . . . . . . . . . . . . . 15 (( R ‘𝑦) = ∅ → (( L ‘𝑦) ∪ ( R ‘𝑦)) = ( L ‘𝑦))
97 eqcom 2736 . . . . . . . . . . . . . . . 16 (( R ‘𝑦) = ∅ ↔ ∅ = ( R ‘𝑦))
9897biimpi 216 . . . . . . . . . . . . . . 15 (( R ‘𝑦) = ∅ → ∅ = ( R ‘𝑦))
9996, 98oveq12d 7387 . . . . . . . . . . . . . 14 (( R ‘𝑦) = ∅ → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) = (( L ‘𝑦) |s ( R ‘𝑦)))
10099breq2d 5114 . . . . . . . . . . . . 13 (( R ‘𝑦) = ∅ → (𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ↔ 𝑦 ≤s (( L ‘𝑦) |s ( R ‘𝑦))))
10193, 100imbitrrid 246 . . . . . . . . . . . 12 (( R ‘𝑦) = ∅ → (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → 𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)))
102 simprlr 779 . . . . . . . . . . . . . 14 ((( R ‘𝑦) ≠ ∅ ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → 𝑦 No )
10375adantl 481 . . . . . . . . . . . . . 14 ((( R ‘𝑦) ≠ ∅ ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ No )
104 n0 4312 . . . . . . . . . . . . . . . . . 18 (( R ‘𝑦) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ ( R ‘𝑦))
105 breq2 5106 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑤 → (𝑦 ≤s 𝑧𝑦 ≤s 𝑤))
106 elun2 4142 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ( R ‘𝑦) → 𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)))
107106adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ( R ‘𝑦) ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → 𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦)))
108 simprlr 779 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 ∈ ( R ‘𝑦) ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → 𝑦 No )
10937sseli 3939 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ( R ‘𝑦) → 𝑤 No )
110109adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 ∈ ( R ‘𝑦) ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → 𝑤 No )
111 rightgt 27813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ ( R ‘𝑦) → 𝑦 <s 𝑤)
112111adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 ∈ ( R ‘𝑦) ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → 𝑦 <s 𝑤)
113108, 110, 112sltled 27714 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ( R ‘𝑦) ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → 𝑦 ≤s 𝑤)
114105, 107, 113rspcedvdw 3588 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ( R ‘𝑦) ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → ∃𝑧 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝑦 ≤s 𝑧)
115114ex 412 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ( R ‘𝑦) → (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ∃𝑧 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝑦 ≤s 𝑧))
116115exlimiv 1930 . . . . . . . . . . . . . . . . . 18 (∃𝑤 𝑤 ∈ ( R ‘𝑦) → (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ∃𝑧 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝑦 ≤s 𝑧))
117104, 116sylbi 217 . . . . . . . . . . . . . . . . 17 (( R ‘𝑦) ≠ ∅ → (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ∃𝑧 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝑦 ≤s 𝑧))
118117imp 406 . . . . . . . . . . . . . . . 16 ((( R ‘𝑦) ≠ ∅ ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → ∃𝑧 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝑦 ≤s 𝑧)
119118orcd 873 . . . . . . . . . . . . . . 15 ((( R ‘𝑦) ≠ ∅ ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → (∃𝑧 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝑦 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑦)𝑤 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)))
120 lltropt 27821 . . . . . . . . . . . . . . . . 17 ( L ‘𝑦) <<s ( R ‘𝑦)
121120a1i 11 . . . . . . . . . . . . . . . 16 ((( R ‘𝑦) ≠ ∅ ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → ( L ‘𝑦) <<s ( R ‘𝑦))
12243, 44mp1i 13 . . . . . . . . . . . . . . . 16 ((( R ‘𝑦) ≠ ∅ ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → (( L ‘𝑦) ∪ ( R ‘𝑦)) <<s ∅)
123102, 91syl 17 . . . . . . . . . . . . . . . . 17 ((( R ‘𝑦) ≠ ∅ ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → (( L ‘𝑦) |s ( R ‘𝑦)) = 𝑦)
124123eqcomd 2735 . . . . . . . . . . . . . . . 16 ((( R ‘𝑦) ≠ ∅ ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → 𝑦 = (( L ‘𝑦) |s ( R ‘𝑦)))
125 eqidd 2730 . . . . . . . . . . . . . . . 16 ((( R ‘𝑦) ≠ ∅ ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) = ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅))
126121, 122, 124, 125sltrecd 27768 . . . . . . . . . . . . . . 15 ((( R ‘𝑦) ≠ ∅ ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → (𝑦 <s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ↔ (∃𝑧 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝑦 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑦)𝑤 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅))))
127119, 126mpbird 257 . . . . . . . . . . . . . 14 ((( R ‘𝑦) ≠ ∅ ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → 𝑦 <s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅))
128102, 103, 127sltled 27714 . . . . . . . . . . . . 13 ((( R ‘𝑦) ≠ ∅ ∧ ((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴))) → 𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅))
129128ex 412 . . . . . . . . . . . 12 (( R ‘𝑦) ≠ ∅ → (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → 𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)))
130101, 129pm2.61ine 3008 . . . . . . . . . . 11 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → 𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅))
131 slenlt 27697 . . . . . . . . . . . 12 ((𝑦 No ∧ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ No ) → (𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ↔ ¬ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦))
13289, 75, 131syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → (𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ↔ ¬ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦))
133130, 132mpbid 232 . . . . . . . . . 10 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ¬ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦)
134 breq1 5105 . . . . . . . . . . . 12 (𝑧 = ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) → (𝑧 <s 𝐴 ↔ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝐴))
135 breq1 5105 . . . . . . . . . . . . 13 (𝑧 = ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) → (𝑧 <s 𝑦 ↔ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦))
136135notbid 318 . . . . . . . . . . . 12 (𝑧 = ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) → (¬ 𝑧 <s 𝑦 ↔ ¬ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦))
137134, 136anbi12d 632 . . . . . . . . . . 11 (𝑧 = ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) → ((𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦) ↔ (((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝐴 ∧ ¬ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦)))
138137rspcev 3585 . . . . . . . . . 10 ((((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ Ons ∧ (((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝐴 ∧ ¬ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦)) → ∃𝑧 ∈ Ons (𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦))
13941, 88, 133, 138syl12anc 836 . . . . . . . . 9 (((𝐴 ∈ Ons𝑦 No ) ∧ ( bday 𝑦) ∈ ( bday 𝐴)) → ∃𝑧 ∈ Ons (𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦))
140139ex 412 . . . . . . . 8 ((𝐴 ∈ Ons𝑦 No ) → (( bday 𝑦) ∈ ( bday 𝐴) → ∃𝑧 ∈ Ons (𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦)))
141 ontri1 6354 . . . . . . . . . 10 ((( bday 𝐴) ∈ On ∧ ( bday 𝑦) ∈ On) → (( bday 𝐴) ⊆ ( bday 𝑦) ↔ ¬ ( bday 𝑦) ∈ ( bday 𝐴)))
14271, 51, 141mp2an 692 . . . . . . . . 9 (( bday 𝐴) ⊆ ( bday 𝑦) ↔ ¬ ( bday 𝑦) ∈ ( bday 𝐴))
143142con2bii 357 . . . . . . . 8 (( bday 𝑦) ∈ ( bday 𝐴) ↔ ¬ ( bday 𝐴) ⊆ ( bday 𝑦))
144 rexanali 3084 . . . . . . . 8 (∃𝑧 ∈ Ons (𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦) ↔ ¬ ∀𝑧 ∈ Ons (𝑧 <s 𝐴𝑧 <s 𝑦))
145140, 143, 1443imtr3g 295 . . . . . . 7 ((𝐴 ∈ Ons𝑦 No ) → (¬ ( bday 𝐴) ⊆ ( bday 𝑦) → ¬ ∀𝑧 ∈ Ons (𝑧 <s 𝐴𝑧 <s 𝑦)))
146145con4d 115 . . . . . 6 ((𝐴 ∈ Ons𝑦 No ) → (∀𝑧 ∈ Ons (𝑧 <s 𝐴𝑧 <s 𝑦) → ( bday 𝐴) ⊆ ( bday 𝑦)))
14731, 146syl5 34 . . . . 5 ((𝐴 ∈ Ons𝑦 No ) → ({𝑥 ∈ Ons𝑥 <s 𝐴} <<s {𝑦} → ( bday 𝐴) ⊆ ( bday 𝑦)))
148147adantrd 491 . . . 4 ((𝐴 ∈ Ons𝑦 No ) → (({𝑥 ∈ Ons𝑥 <s 𝐴} <<s {𝑦} ∧ {𝑦} <<s ∅) → ( bday 𝐴) ⊆ ( bday 𝑦)))
149148ralrimiva 3125 . . 3 (𝐴 ∈ Ons → ∀𝑦 No (({𝑥 ∈ Ons𝑥 <s 𝐴} <<s {𝑦} ∧ {𝑦} <<s ∅) → ( bday 𝐴) ⊆ ( bday 𝑦)))
1503, 8elpwd 4565 . . . . 5 (𝐴 ∈ Ons → {𝑥 ∈ Ons𝑥 <s 𝐴} ∈ 𝒫 No )
151 nulssgt 27744 . . . . 5 ({𝑥 ∈ Ons𝑥 <s 𝐴} ∈ 𝒫 No → {𝑥 ∈ Ons𝑥 <s 𝐴} <<s ∅)
152150, 151syl 17 . . . 4 (𝐴 ∈ Ons → {𝑥 ∈ Ons𝑥 <s 𝐴} <<s ∅)
153 eqscut2 27752 . . . 4 (({𝑥 ∈ Ons𝑥 <s 𝐴} <<s ∅ ∧ 𝐴 No ) → (({𝑥 ∈ Ons𝑥 <s 𝐴} |s ∅) = 𝐴 ↔ ({𝑥 ∈ Ons𝑥 <s 𝐴} <<s {𝐴} ∧ {𝐴} <<s ∅ ∧ ∀𝑦 No (({𝑥 ∈ Ons𝑥 <s 𝐴} <<s {𝑦} ∧ {𝑦} <<s ∅) → ( bday 𝐴) ⊆ ( bday 𝑦)))))
154152, 1, 153syl2anc 584 . . 3 (𝐴 ∈ Ons → (({𝑥 ∈ Ons𝑥 <s 𝐴} |s ∅) = 𝐴 ↔ ({𝑥 ∈ Ons𝑥 <s 𝐴} <<s {𝐴} ∧ {𝐴} <<s ∅ ∧ ∀𝑦 No (({𝑥 ∈ Ons𝑥 <s 𝐴} <<s {𝑦} ∧ {𝑦} <<s ∅) → ( bday 𝐴) ⊆ ( bday 𝑦)))))
15519, 22, 149, 154mpbir3and 1343 . 2 (𝐴 ∈ Ons → ({𝑥 ∈ Ons𝑥 <s 𝐴} |s ∅) = 𝐴)
156155eqcomd 2735 1 (𝐴 ∈ Ons𝐴 = ({𝑥 ∈ Ons𝑥 <s 𝐴} |s ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cun 3909  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   class class class wbr 5102  dom cdm 5631  cima 5634  Oncon0 6320  Fun wfun 6493  cfv 6499  (class class class)co 7369   No csur 27584   <s cslt 27585   bday cbday 27586   ≤s csle 27689   <<s csslt 27726   |s cscut 27728   O cold 27788   L cleft 27790   R cright 27791  Onscons 28192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-made 27792  df-old 27793  df-new 27794  df-left 27795  df-right 27796  df-ons 28193
This theorem is referenced by:  bdayon  28213  onsfi  28287  n0cutlt  28289
  Copyright terms: Public domain W3C validator