| Step | Hyp | Ref
| Expression |
| 1 | | onsno 28208 |
. . . . 5
⊢ (𝐴 ∈ Ons →
𝐴 ∈ No ) |
| 2 | | sltonex 28215 |
. . . . 5
⊢ (𝐴 ∈
No → {𝑥 ∈
Ons ∣ 𝑥
<s 𝐴} ∈
V) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝐴 ∈ Ons →
{𝑥 ∈ Ons
∣ 𝑥 <s 𝐴} ∈ V) |
| 4 | | snexg 5405 |
. . . 4
⊢ (𝐴 ∈ Ons →
{𝐴} ∈
V) |
| 5 | | ssrab2 4055 |
. . . . . 6
⊢ {𝑥 ∈ Ons ∣
𝑥 <s 𝐴} ⊆ Ons |
| 6 | | onssno 28207 |
. . . . . 6
⊢
Ons ⊆ No
|
| 7 | 5, 6 | sstri 3968 |
. . . . 5
⊢ {𝑥 ∈ Ons ∣
𝑥 <s 𝐴} ⊆ No
|
| 8 | 7 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ Ons →
{𝑥 ∈ Ons
∣ 𝑥 <s 𝐴} ⊆
No ) |
| 9 | 1 | snssd 4785 |
. . . 4
⊢ (𝐴 ∈ Ons →
{𝐴} ⊆ No ) |
| 10 | | breq1 5122 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 <s 𝐴 ↔ 𝑦 <s 𝐴)) |
| 11 | 10 | elrab 3671 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} ↔ (𝑦 ∈ Ons ∧ 𝑦 <s 𝐴)) |
| 12 | 11 | simprbi 496 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} → 𝑦 <s 𝐴) |
| 13 | | velsn 4617 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝐴} ↔ 𝑧 = 𝐴) |
| 14 | | breq2 5123 |
. . . . . . . 8
⊢ (𝑧 = 𝐴 → (𝑦 <s 𝑧 ↔ 𝑦 <s 𝐴)) |
| 15 | 13, 14 | sylbi 217 |
. . . . . . 7
⊢ (𝑧 ∈ {𝐴} → (𝑦 <s 𝑧 ↔ 𝑦 <s 𝐴)) |
| 16 | 12, 15 | syl5ibrcom 247 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} → (𝑧 ∈ {𝐴} → 𝑦 <s 𝑧)) |
| 17 | 16 | imp 406 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} ∧ 𝑧 ∈ {𝐴}) → 𝑦 <s 𝑧) |
| 18 | 17 | 3adant1 1130 |
. . . 4
⊢ ((𝐴 ∈ Ons ∧
𝑦 ∈ {𝑥 ∈ Ons ∣
𝑥 <s 𝐴} ∧ 𝑧 ∈ {𝐴}) → 𝑦 <s 𝑧) |
| 19 | 3, 4, 8, 9, 18 | ssltd 27755 |
. . 3
⊢ (𝐴 ∈ Ons →
{𝑥 ∈ Ons
∣ 𝑥 <s 𝐴} <<s {𝐴}) |
| 20 | | snelpwi 5418 |
. . . 4
⊢ (𝐴 ∈
No → {𝐴}
∈ 𝒫 No ) |
| 21 | | nulssgt 27762 |
. . . 4
⊢ ({𝐴} ∈ 𝒫 No → {𝐴} <<s ∅) |
| 22 | 1, 20, 21 | 3syl 18 |
. . 3
⊢ (𝐴 ∈ Ons →
{𝐴} <<s
∅) |
| 23 | | ssltsep 27754 |
. . . . . . 7
⊢ ({𝑥 ∈ Ons ∣
𝑥 <s 𝐴} <<s {𝑦} → ∀𝑧 ∈ {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴}∀𝑤 ∈ {𝑦}𝑧 <s 𝑤) |
| 24 | | vex 3463 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 25 | | breq2 5123 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑧 <s 𝑤 ↔ 𝑧 <s 𝑦)) |
| 26 | 24, 25 | ralsn 4657 |
. . . . . . . . 9
⊢
(∀𝑤 ∈
{𝑦}𝑧 <s 𝑤 ↔ 𝑧 <s 𝑦) |
| 27 | 26 | ralbii 3082 |
. . . . . . . 8
⊢
(∀𝑧 ∈
{𝑥 ∈ Ons
∣ 𝑥 <s 𝐴}∀𝑤 ∈ {𝑦}𝑧 <s 𝑤 ↔ ∀𝑧 ∈ {𝑥 ∈ Ons ∣ 𝑥 <s 𝐴}𝑧 <s 𝑦) |
| 28 | | breq1 5122 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 <s 𝐴 ↔ 𝑧 <s 𝐴)) |
| 29 | 28 | ralrab 3677 |
. . . . . . . 8
⊢
(∀𝑧 ∈
{𝑥 ∈ Ons
∣ 𝑥 <s 𝐴}𝑧 <s 𝑦 ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝐴 → 𝑧 <s 𝑦)) |
| 30 | 27, 29 | bitri 275 |
. . . . . . 7
⊢
(∀𝑧 ∈
{𝑥 ∈ Ons
∣ 𝑥 <s 𝐴}∀𝑤 ∈ {𝑦}𝑧 <s 𝑤 ↔ ∀𝑧 ∈ Ons (𝑧 <s 𝐴 → 𝑧 <s 𝑦)) |
| 31 | 23, 30 | sylib 218 |
. . . . . 6
⊢ ({𝑥 ∈ Ons ∣
𝑥 <s 𝐴} <<s {𝑦} → ∀𝑧 ∈ Ons (𝑧 <s 𝐴 → 𝑧 <s 𝑦)) |
| 32 | | fvex 6889 |
. . . . . . . . . . . . 13
⊢ ( L
‘𝑦) ∈
V |
| 33 | | fvex 6889 |
. . . . . . . . . . . . 13
⊢ ( R
‘𝑦) ∈
V |
| 34 | 32, 33 | unex 7738 |
. . . . . . . . . . . 12
⊢ (( L
‘𝑦) ∪ ( R
‘𝑦)) ∈
V |
| 35 | 34 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → (( L ‘𝑦) ∪ ( R ‘𝑦)) ∈ V) |
| 36 | | leftssno 27844 |
. . . . . . . . . . . . 13
⊢ ( L
‘𝑦) ⊆ No |
| 37 | | rightssno 27845 |
. . . . . . . . . . . . 13
⊢ ( R
‘𝑦) ⊆ No |
| 38 | 36, 37 | unssi 4166 |
. . . . . . . . . . . 12
⊢ (( L
‘𝑦) ∪ ( R
‘𝑦)) ⊆ No |
| 39 | 38 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → (( L ‘𝑦) ∪ ( R ‘𝑦)) ⊆ No
) |
| 40 | | eqidd 2736 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) = ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) |
| 41 | 35, 39, 40 | elons2d 28212 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈
Ons) |
| 42 | 34 | elpw 4579 |
. . . . . . . . . . . . . . . . 17
⊢ ((( L
‘𝑦) ∪ ( R
‘𝑦)) ∈ 𝒫
No ↔ (( L ‘𝑦) ∪ ( R ‘𝑦)) ⊆ No
) |
| 43 | 38, 42 | mpbir 231 |
. . . . . . . . . . . . . . . 16
⊢ (( L
‘𝑦) ∪ ( R
‘𝑦)) ∈ 𝒫
No |
| 44 | | nulssgt 27762 |
. . . . . . . . . . . . . . . 16
⊢ ((( L
‘𝑦) ∪ ( R
‘𝑦)) ∈ 𝒫
No → (( L ‘𝑦) ∪ ( R ‘𝑦)) <<s ∅) |
| 45 | 43, 44 | mp1i 13 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → (( L ‘𝑦) ∪ ( R ‘𝑦)) <<s ∅) |
| 46 | | un0 4369 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( L
‘𝑦) ∪ ( R
‘𝑦)) ∪ ∅) =
(( L ‘𝑦) ∪ ( R
‘𝑦)) |
| 47 | | lrold 27860 |
. . . . . . . . . . . . . . . . . 18
⊢ (( L
‘𝑦) ∪ ( R
‘𝑦)) = ( O
‘( bday ‘𝑦)) |
| 48 | 46, 47 | eqtri 2758 |
. . . . . . . . . . . . . . . . 17
⊢ ((( L
‘𝑦) ∪ ( R
‘𝑦)) ∪ ∅) =
( O ‘( bday ‘𝑦)) |
| 49 | 48 | imaeq2i 6045 |
. . . . . . . . . . . . . . . 16
⊢ ( bday “ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ ∅)) = (
bday “ ( O ‘( bday
‘𝑦))) |
| 50 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) ∧ 𝑧 ∈ ( O ‘(
bday ‘𝑦)))
→ 𝑧 ∈ ( O
‘( bday ‘𝑦))) |
| 51 | | bdayelon 27740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( bday ‘𝑦) ∈ On |
| 52 | | oldssno 27821 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ( O
‘( bday ‘𝑦)) ⊆ No
|
| 53 | 52 | sseli 3954 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ( O ‘( bday ‘𝑦)) → 𝑧 ∈ No
) |
| 54 | 53 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) ∧ 𝑧 ∈ ( O ‘(
bday ‘𝑦)))
→ 𝑧 ∈ No ) |
| 55 | | oldbday 27864 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((( bday ‘𝑦) ∈ On ∧ 𝑧 ∈ No )
→ (𝑧 ∈ ( O
‘( bday ‘𝑦)) ↔ ( bday
‘𝑧) ∈
( bday ‘𝑦))) |
| 56 | 51, 54, 55 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) ∧ 𝑧 ∈ ( O ‘(
bday ‘𝑦)))
→ (𝑧 ∈ ( O
‘( bday ‘𝑦)) ↔ ( bday
‘𝑧) ∈
( bday ‘𝑦))) |
| 57 | 50, 56 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) ∧ 𝑧 ∈ ( O ‘(
bday ‘𝑦)))
→ ( bday ‘𝑧) ∈ ( bday
‘𝑦)) |
| 58 | 57 | ralrimiva 3132 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ∀𝑧 ∈ ( O ‘(
bday ‘𝑦))( bday
‘𝑧) ∈
( bday ‘𝑦)) |
| 59 | | bdayfun 27736 |
. . . . . . . . . . . . . . . . . 18
⊢ Fun bday |
| 60 | | bdaydm 27738 |
. . . . . . . . . . . . . . . . . . 19
⊢ dom bday = No
|
| 61 | 52, 60 | sseqtrri 4008 |
. . . . . . . . . . . . . . . . . 18
⊢ ( O
‘( bday ‘𝑦)) ⊆ dom bday
|
| 62 | | funimass4 6943 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Fun
bday ∧ ( O ‘(
bday ‘𝑦))
⊆ dom bday ) → (( bday “ ( O ‘( bday
‘𝑦))) ⊆
( bday ‘𝑦) ↔ ∀𝑧 ∈ ( O ‘(
bday ‘𝑦))( bday
‘𝑧) ∈
( bday ‘𝑦))) |
| 63 | 59, 61, 62 | mp2an 692 |
. . . . . . . . . . . . . . . . 17
⊢ (( bday “ ( O ‘( bday
‘𝑦))) ⊆
( bday ‘𝑦) ↔ ∀𝑧 ∈ ( O ‘(
bday ‘𝑦))( bday
‘𝑧) ∈
( bday ‘𝑦)) |
| 64 | 58, 63 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ( bday
“ ( O ‘( bday ‘𝑦))) ⊆ ( bday ‘𝑦)) |
| 65 | 49, 64 | eqsstrid 3997 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ( bday
“ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ ∅)) ⊆ ( bday ‘𝑦)) |
| 66 | | scutbdaybnd 27779 |
. . . . . . . . . . . . . . . 16
⊢ (((( L
‘𝑦) ∪ ( R
‘𝑦)) <<s
∅ ∧ ( bday ‘𝑦) ∈ On ∧ (
bday “ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ ∅)) ⊆ ( bday ‘𝑦)) → ( bday
‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ⊆ ( bday ‘𝑦)) |
| 67 | 51, 66 | mp3an2 1451 |
. . . . . . . . . . . . . . 15
⊢ (((( L
‘𝑦) ∪ ( R
‘𝑦)) <<s
∅ ∧ ( bday “ ((( L ‘𝑦) ∪ ( R ‘𝑦)) ∪ ∅)) ⊆
( bday ‘𝑦)) → ( bday
‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ⊆ ( bday ‘𝑦)) |
| 68 | 45, 65, 67 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ( bday
‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ⊆ ( bday ‘𝑦)) |
| 69 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ( bday
‘𝑦) ∈
( bday ‘𝐴)) |
| 70 | | bdayelon 27740 |
. . . . . . . . . . . . . . 15
⊢ ( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ On |
| 71 | | bdayelon 27740 |
. . . . . . . . . . . . . . 15
⊢ ( bday ‘𝐴) ∈ On |
| 72 | | ontr2 6400 |
. . . . . . . . . . . . . . 15
⊢ ((( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ On ∧ ( bday ‘𝐴) ∈ On) → ((( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ⊆ ( bday ‘𝑦) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ( bday
‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ ( bday ‘𝐴))) |
| 73 | 70, 71, 72 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ⊆ ( bday ‘𝑦) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ( bday
‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ ( bday ‘𝐴)) |
| 74 | 68, 69, 73 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ( bday
‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ ( bday ‘𝐴)) |
| 75 | 45 | scutcld 27767 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈
No ) |
| 76 | | oldbday 27864 |
. . . . . . . . . . . . . 14
⊢ ((( bday ‘𝐴) ∈ On ∧ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ No ) → (((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ ( O ‘( bday ‘𝐴)) ↔ ( bday
‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ ( bday ‘𝐴))) |
| 77 | 71, 75, 76 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → (((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ ( O ‘( bday ‘𝐴)) ↔ ( bday
‘((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) ∈ ( bday ‘𝐴))) |
| 78 | 74, 77 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ ( O ‘( bday ‘𝐴))) |
| 79 | | elons 28206 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ Ons ↔
(𝐴 ∈ No ∧ ( R ‘𝐴) = ∅)) |
| 80 | 79 | simprbi 496 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ Ons → (
R ‘𝐴) =
∅) |
| 81 | 80 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ( R ‘𝐴) = ∅) |
| 82 | 81 | uneq2d 4143 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → (( L ‘𝐴) ∪ ( R ‘𝐴)) = (( L ‘𝐴) ∪ ∅)) |
| 83 | | lrold 27860 |
. . . . . . . . . . . . 13
⊢ (( L
‘𝐴) ∪ ( R
‘𝐴)) = ( O
‘( bday ‘𝐴)) |
| 84 | | un0 4369 |
. . . . . . . . . . . . 13
⊢ (( L
‘𝐴) ∪ ∅) =
( L ‘𝐴) |
| 85 | 82, 83, 84 | 3eqtr3g 2793 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ( O ‘(
bday ‘𝐴)) = (
L ‘𝐴)) |
| 86 | 78, 85 | eleqtrd 2836 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈ ( L ‘𝐴)) |
| 87 | | leftlt 27827 |
. . . . . . . . . . 11
⊢ (((( L
‘𝑦) ∪ ( R
‘𝑦)) |s ∅)
∈ ( L ‘𝐴) →
((( L ‘𝑦) ∪ ( R
‘𝑦)) |s ∅)
<s 𝐴) |
| 88 | 86, 87 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝐴) |
| 89 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → 𝑦 ∈ No
) |
| 90 | | slerflex 27727 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈
No → 𝑦 ≤s
𝑦) |
| 91 | | lrcut 27867 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈
No → (( L ‘𝑦) |s ( R ‘𝑦)) = 𝑦) |
| 92 | 90, 91 | breqtrrd 5147 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈
No → 𝑦 ≤s
(( L ‘𝑦) |s ( R
‘𝑦))) |
| 93 | 89, 92 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → 𝑦 ≤s (( L ‘𝑦) |s ( R ‘𝑦))) |
| 94 | | uneq2 4137 |
. . . . . . . . . . . . . . . 16
⊢ (( R
‘𝑦) = ∅ →
(( L ‘𝑦) ∪ ( R
‘𝑦)) = (( L
‘𝑦) ∪
∅)) |
| 95 | | un0 4369 |
. . . . . . . . . . . . . . . 16
⊢ (( L
‘𝑦) ∪ ∅) =
( L ‘𝑦) |
| 96 | 94, 95 | eqtrdi 2786 |
. . . . . . . . . . . . . . 15
⊢ (( R
‘𝑦) = ∅ →
(( L ‘𝑦) ∪ ( R
‘𝑦)) = ( L
‘𝑦)) |
| 97 | | eqcom 2742 |
. . . . . . . . . . . . . . . 16
⊢ (( R
‘𝑦) = ∅ ↔
∅ = ( R ‘𝑦)) |
| 98 | 97 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ (( R
‘𝑦) = ∅ →
∅ = ( R ‘𝑦)) |
| 99 | 96, 98 | oveq12d 7423 |
. . . . . . . . . . . . . 14
⊢ (( R
‘𝑦) = ∅ →
((( L ‘𝑦) ∪ ( R
‘𝑦)) |s ∅) = ((
L ‘𝑦) |s ( R
‘𝑦))) |
| 100 | 99 | breq2d 5131 |
. . . . . . . . . . . . 13
⊢ (( R
‘𝑦) = ∅ →
(𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ↔ 𝑦 ≤s (( L ‘𝑦) |s ( R ‘𝑦)))) |
| 101 | 93, 100 | imbitrrid 246 |
. . . . . . . . . . . 12
⊢ (( R
‘𝑦) = ∅ →
(((𝐴 ∈ Ons
∧ 𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → 𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅))) |
| 102 | | simprlr 779 |
. . . . . . . . . . . . . 14
⊢ ((( R
‘𝑦) ≠ ∅
∧ ((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴))) → 𝑦 ∈ No
) |
| 103 | 75 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((( R
‘𝑦) ≠ ∅
∧ ((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴))) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈
No ) |
| 104 | | n0 4328 |
. . . . . . . . . . . . . . . . . 18
⊢ (( R
‘𝑦) ≠ ∅
↔ ∃𝑤 𝑤 ∈ ( R ‘𝑦)) |
| 105 | | breq2 5123 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑤 → (𝑦 ≤s 𝑧 ↔ 𝑦 ≤s 𝑤)) |
| 106 | | elun2 4158 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ ( R ‘𝑦) → 𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) |
| 107 | 106 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ ( R ‘𝑦) ∧ ((𝐴 ∈ Ons ∧ 𝑦 ∈
No ) ∧ ( bday ‘𝑦) ∈ ( bday
‘𝐴))) →
𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))) |
| 108 | | simprlr 779 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 ∈ ( R ‘𝑦) ∧ ((𝐴 ∈ Ons ∧ 𝑦 ∈
No ) ∧ ( bday ‘𝑦) ∈ ( bday
‘𝐴))) →
𝑦 ∈ No ) |
| 109 | 37 | sseli 3954 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ ( R ‘𝑦) → 𝑤 ∈ No
) |
| 110 | 109 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 ∈ ( R ‘𝑦) ∧ ((𝐴 ∈ Ons ∧ 𝑦 ∈
No ) ∧ ( bday ‘𝑦) ∈ ( bday
‘𝐴))) →
𝑤 ∈ No ) |
| 111 | | rightgt 27828 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ ( R ‘𝑦) → 𝑦 <s 𝑤) |
| 112 | 111 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑤 ∈ ( R ‘𝑦) ∧ ((𝐴 ∈ Ons ∧ 𝑦 ∈
No ) ∧ ( bday ‘𝑦) ∈ ( bday
‘𝐴))) →
𝑦 <s 𝑤) |
| 113 | 108, 110,
112 | sltled 27733 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ ( R ‘𝑦) ∧ ((𝐴 ∈ Ons ∧ 𝑦 ∈
No ) ∧ ( bday ‘𝑦) ∈ ( bday
‘𝐴))) →
𝑦 ≤s 𝑤) |
| 114 | 105, 107,
113 | rspcedvdw 3604 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ∈ ( R ‘𝑦) ∧ ((𝐴 ∈ Ons ∧ 𝑦 ∈
No ) ∧ ( bday ‘𝑦) ∈ ( bday
‘𝐴))) →
∃𝑧 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))𝑦 ≤s 𝑧) |
| 115 | 114 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ ( R ‘𝑦) → (((𝐴 ∈ Ons ∧ 𝑦 ∈
No ) ∧ ( bday ‘𝑦) ∈ ( bday
‘𝐴)) →
∃𝑧 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))𝑦 ≤s 𝑧)) |
| 116 | 115 | exlimiv 1930 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑤 𝑤 ∈ ( R ‘𝑦) → (((𝐴 ∈ Ons ∧ 𝑦 ∈
No ) ∧ ( bday ‘𝑦) ∈ ( bday
‘𝐴)) →
∃𝑧 ∈ (( L
‘𝑦) ∪ ( R
‘𝑦))𝑦 ≤s 𝑧)) |
| 117 | 104, 116 | sylbi 217 |
. . . . . . . . . . . . . . . . 17
⊢ (( R
‘𝑦) ≠ ∅
→ (((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ∃𝑧 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝑦 ≤s 𝑧)) |
| 118 | 117 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ ((( R
‘𝑦) ≠ ∅
∧ ((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴))) → ∃𝑧 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝑦 ≤s 𝑧) |
| 119 | 118 | orcd 873 |
. . . . . . . . . . . . . . 15
⊢ ((( R
‘𝑦) ≠ ∅
∧ ((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴))) → (∃𝑧 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝑦 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑦)𝑤 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅))) |
| 120 | | lltropt 27836 |
. . . . . . . . . . . . . . . . 17
⊢ ( L
‘𝑦) <<s ( R
‘𝑦) |
| 121 | 120 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((( R
‘𝑦) ≠ ∅
∧ ((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴))) → ( L ‘𝑦) <<s ( R ‘𝑦)) |
| 122 | 43, 44 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ ((( R
‘𝑦) ≠ ∅
∧ ((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴))) → (( L ‘𝑦) ∪ ( R ‘𝑦)) <<s ∅) |
| 123 | 102, 91 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((( R
‘𝑦) ≠ ∅
∧ ((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴))) → (( L ‘𝑦) |s ( R ‘𝑦)) = 𝑦) |
| 124 | 123 | eqcomd 2741 |
. . . . . . . . . . . . . . . 16
⊢ ((( R
‘𝑦) ≠ ∅
∧ ((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴))) → 𝑦 = (( L ‘𝑦) |s ( R ‘𝑦))) |
| 125 | | eqidd 2736 |
. . . . . . . . . . . . . . . 16
⊢ ((( R
‘𝑦) ≠ ∅
∧ ((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴))) → ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) = ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) |
| 126 | | sltrec 27784 |
. . . . . . . . . . . . . . . 16
⊢ (((( L
‘𝑦) <<s ( R
‘𝑦) ∧ (( L
‘𝑦) ∪ ( R
‘𝑦)) <<s
∅) ∧ (𝑦 = (( L
‘𝑦) |s ( R
‘𝑦)) ∧ ((( L
‘𝑦) ∪ ( R
‘𝑦)) |s ∅) =
((( L ‘𝑦) ∪ ( R
‘𝑦)) |s ∅)))
→ (𝑦 <s ((( L
‘𝑦) ∪ ( R
‘𝑦)) |s ∅)
↔ (∃𝑧 ∈ ((
L ‘𝑦) ∪ ( R
‘𝑦))𝑦 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑦)𝑤 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)))) |
| 127 | 121, 122,
124, 125, 126 | syl22anc 838 |
. . . . . . . . . . . . . . 15
⊢ ((( R
‘𝑦) ≠ ∅
∧ ((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴))) → (𝑦 <s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ↔ (∃𝑧 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝑦 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑦)𝑤 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)))) |
| 128 | 119, 127 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((( R
‘𝑦) ≠ ∅
∧ ((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴))) → 𝑦 <s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) |
| 129 | 102, 103,
128 | sltled 27733 |
. . . . . . . . . . . . 13
⊢ ((( R
‘𝑦) ≠ ∅
∧ ((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴))) → 𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) |
| 130 | 129 | ex 412 |
. . . . . . . . . . . 12
⊢ (( R
‘𝑦) ≠ ∅
→ (((𝐴 ∈
Ons ∧ 𝑦
∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → 𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅))) |
| 131 | 101, 130 | pm2.61ine 3015 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → 𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅)) |
| 132 | | slenlt 27716 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈
No ∧ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ∈
No ) → (𝑦 ≤s
((( L ‘𝑦) ∪ ( R
‘𝑦)) |s ∅)
↔ ¬ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦)) |
| 133 | 89, 75, 132 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → (𝑦 ≤s ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) ↔ ¬ ((( L
‘𝑦) ∪ ( R
‘𝑦)) |s ∅)
<s 𝑦)) |
| 134 | 131, 133 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ¬ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦) |
| 135 | | breq1 5122 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) → (𝑧 <s 𝐴 ↔ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝐴)) |
| 136 | | breq1 5122 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) → (𝑧 <s 𝑦 ↔ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦)) |
| 137 | 136 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) → (¬
𝑧 <s 𝑦 ↔ ¬ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦)) |
| 138 | 135, 137 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑧 = ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) → ((𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦) ↔ (((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝐴 ∧ ¬ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦))) |
| 139 | 138 | rspcev 3601 |
. . . . . . . . . 10
⊢ ((((( L
‘𝑦) ∪ ( R
‘𝑦)) |s ∅)
∈ Ons ∧ (((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝐴 ∧ ¬ ((( L ‘𝑦) ∪ ( R ‘𝑦)) |s ∅) <s 𝑦)) → ∃𝑧 ∈ Ons (𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦)) |
| 140 | 41, 88, 134, 139 | syl12anc 836 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Ons ∧
𝑦 ∈ No ) ∧ ( bday
‘𝑦) ∈
( bday ‘𝐴)) → ∃𝑧 ∈ Ons (𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦)) |
| 141 | 140 | ex 412 |
. . . . . . . 8
⊢ ((𝐴 ∈ Ons ∧
𝑦 ∈ No ) → (( bday
‘𝑦) ∈
( bday ‘𝐴) → ∃𝑧 ∈ Ons (𝑧 <s 𝐴 ∧ ¬ 𝑧 <s 𝑦))) |
| 142 | | ontri1 6386 |
. . . . . . . . . 10
⊢ ((( bday ‘𝐴) ∈ On ∧ (
bday ‘𝑦)
∈ On) → (( bday ‘𝐴) ⊆ ( bday
‘𝑦) ↔
¬ ( bday ‘𝑦) ∈ ( bday
‘𝐴))) |
| 143 | 71, 51, 142 | mp2an 692 |
. . . . . . . . 9
⊢ (( bday ‘𝐴) ⊆ ( bday
‘𝑦) ↔
¬ ( bday ‘𝑦) ∈ ( bday
‘𝐴)) |
| 144 | 143 | con2bii 357 |
. . . . . . . 8
⊢ (( bday ‘𝑦) ∈ ( bday
‘𝐴) ↔
¬ ( bday ‘𝐴) ⊆ ( bday
‘𝑦)) |
| 145 | | rexanali 3091 |
. . . . . . . 8
⊢
(∃𝑧 ∈
Ons (𝑧 <s
𝐴 ∧ ¬ 𝑧 <s 𝑦) ↔ ¬ ∀𝑧 ∈ Ons (𝑧 <s 𝐴 → 𝑧 <s 𝑦)) |
| 146 | 141, 144,
145 | 3imtr3g 295 |
. . . . . . 7
⊢ ((𝐴 ∈ Ons ∧
𝑦 ∈ No ) → (¬ ( bday
‘𝐴) ⊆
( bday ‘𝑦) → ¬ ∀𝑧 ∈ Ons (𝑧 <s 𝐴 → 𝑧 <s 𝑦))) |
| 147 | 146 | con4d 115 |
. . . . . 6
⊢ ((𝐴 ∈ Ons ∧
𝑦 ∈ No ) → (∀𝑧 ∈ Ons (𝑧 <s 𝐴 → 𝑧 <s 𝑦) → ( bday
‘𝐴) ⊆
( bday ‘𝑦))) |
| 148 | 31, 147 | syl5 34 |
. . . . 5
⊢ ((𝐴 ∈ Ons ∧
𝑦 ∈ No ) → ({𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} <<s {𝑦} → ( bday
‘𝐴) ⊆
( bday ‘𝑦))) |
| 149 | 148 | adantrd 491 |
. . . 4
⊢ ((𝐴 ∈ Ons ∧
𝑦 ∈ No ) → (({𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} <<s {𝑦} ∧ {𝑦} <<s ∅) → ( bday ‘𝐴) ⊆ ( bday
‘𝑦))) |
| 150 | 149 | ralrimiva 3132 |
. . 3
⊢ (𝐴 ∈ Ons →
∀𝑦 ∈ No (({𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} <<s {𝑦} ∧ {𝑦} <<s ∅) → ( bday ‘𝐴) ⊆ ( bday
‘𝑦))) |
| 151 | 3, 8 | elpwd 4581 |
. . . . 5
⊢ (𝐴 ∈ Ons →
{𝑥 ∈ Ons
∣ 𝑥 <s 𝐴} ∈ 𝒫 No ) |
| 152 | | nulssgt 27762 |
. . . . 5
⊢ ({𝑥 ∈ Ons ∣
𝑥 <s 𝐴} ∈ 𝒫 No
→ {𝑥 ∈
Ons ∣ 𝑥
<s 𝐴} <<s
∅) |
| 153 | 151, 152 | syl 17 |
. . . 4
⊢ (𝐴 ∈ Ons →
{𝑥 ∈ Ons
∣ 𝑥 <s 𝐴} <<s
∅) |
| 154 | | eqscut2 27770 |
. . . 4
⊢ (({𝑥 ∈ Ons ∣
𝑥 <s 𝐴} <<s ∅ ∧ 𝐴 ∈ No )
→ (({𝑥 ∈
Ons ∣ 𝑥
<s 𝐴} |s ∅) =
𝐴 ↔ ({𝑥 ∈ Ons ∣
𝑥 <s 𝐴} <<s {𝐴} ∧ {𝐴} <<s ∅ ∧ ∀𝑦 ∈
No (({𝑥 ∈
Ons ∣ 𝑥
<s 𝐴} <<s {𝑦} ∧ {𝑦} <<s ∅) → ( bday ‘𝐴) ⊆ ( bday
‘𝑦))))) |
| 155 | 153, 1, 154 | syl2anc 584 |
. . 3
⊢ (𝐴 ∈ Ons →
(({𝑥 ∈ Ons
∣ 𝑥 <s 𝐴} |s ∅) = 𝐴 ↔ ({𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} <<s {𝐴} ∧ {𝐴} <<s ∅ ∧ ∀𝑦 ∈
No (({𝑥 ∈
Ons ∣ 𝑥
<s 𝐴} <<s {𝑦} ∧ {𝑦} <<s ∅) → ( bday ‘𝐴) ⊆ ( bday
‘𝑦))))) |
| 156 | 19, 22, 150, 155 | mpbir3and 1343 |
. 2
⊢ (𝐴 ∈ Ons →
({𝑥 ∈ Ons
∣ 𝑥 <s 𝐴} |s ∅) = 𝐴) |
| 157 | 156 | eqcomd 2741 |
1
⊢ (𝐴 ∈ Ons →
𝐴 = ({𝑥 ∈ Ons ∣ 𝑥 <s 𝐴} |s ∅)) |