MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnolt Structured version   Visualization version   GIF version

Theorem onnolt 28174
Description: If a surreal ordinal is less than a given surreal, then it is simpler. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
onnolt ((𝐴 ∈ Ons𝐵 No 𝐴 <s 𝐵) → ( bday 𝐴) ∈ ( bday 𝐵))

Proof of Theorem onnolt
StepHypRef Expression
1 simplr 768 . . . . . . 7 (((𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐵 No )
2 onsno 28163 . . . . . . . . 9 (𝐴 ∈ Ons𝐴 No )
32adantr 480 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ) → 𝐴 No )
43adantr 480 . . . . . . 7 (((𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐴 No )
5 bdayelon 27686 . . . . . . . . . . 11 ( bday 𝐴) ∈ On
6 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ Ons𝐵 No ) → 𝐵 No )
7 oldbday 27817 . . . . . . . . . . 11 ((( bday 𝐴) ∈ On ∧ 𝐵 No ) → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝐵) ∈ ( bday 𝐴)))
85, 6, 7sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ Ons𝐵 No ) → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝐵) ∈ ( bday 𝐴)))
9 onsleft 28168 . . . . . . . . . . . 12 (𝐴 ∈ Ons → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
109eleq2d 2814 . . . . . . . . . . 11 (𝐴 ∈ Ons → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ 𝐵 ∈ ( L ‘𝐴)))
1110adantr 480 . . . . . . . . . 10 ((𝐴 ∈ Ons𝐵 No ) → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ 𝐵 ∈ ( L ‘𝐴)))
128, 11bitr3d 281 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 No ) → (( bday 𝐵) ∈ ( bday 𝐴) ↔ 𝐵 ∈ ( L ‘𝐴)))
13 leftlt 27779 . . . . . . . . 9 (𝐵 ∈ ( L ‘𝐴) → 𝐵 <s 𝐴)
1412, 13biimtrdi 253 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ) → (( bday 𝐵) ∈ ( bday 𝐴) → 𝐵 <s 𝐴))
1514imp 406 . . . . . . 7 (((𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐵 <s 𝐴)
161, 4, 15sltled 27679 . . . . . 6 (((𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐵 ≤s 𝐴)
1716ex 412 . . . . 5 ((𝐴 ∈ Ons𝐵 No ) → (( bday 𝐵) ∈ ( bday 𝐴) → 𝐵 ≤s 𝐴))
18 leftssold 27795 . . . . . . . 8 ( L ‘𝐵) ⊆ ( O ‘( bday 𝐵))
19 fveq2 6822 . . . . . . . . . 10 (( bday 𝐵) = ( bday 𝐴) → ( O ‘( bday 𝐵)) = ( O ‘( bday 𝐴)))
20193ad2ant3 1135 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( O ‘( bday 𝐵)) = ( O ‘( bday 𝐴)))
2193ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
2220, 21eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( O ‘( bday 𝐵)) = ( L ‘𝐴))
2318, 22sseqtrid 3978 . . . . . . 7 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( L ‘𝐵) ⊆ ( L ‘𝐴))
24 simp2 1137 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → 𝐵 No )
2523ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → 𝐴 No )
26 simp3 1138 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( bday 𝐵) = ( bday 𝐴))
27 slelss 27825 . . . . . . . 8 ((𝐵 No 𝐴 No ∧ ( bday 𝐵) = ( bday 𝐴)) → (𝐵 ≤s 𝐴 ↔ ( L ‘𝐵) ⊆ ( L ‘𝐴)))
2824, 25, 26, 27syl3anc 1373 . . . . . . 7 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → (𝐵 ≤s 𝐴 ↔ ( L ‘𝐵) ⊆ ( L ‘𝐴)))
2923, 28mpbird 257 . . . . . 6 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → 𝐵 ≤s 𝐴)
30293expia 1121 . . . . 5 ((𝐴 ∈ Ons𝐵 No ) → (( bday 𝐵) = ( bday 𝐴) → 𝐵 ≤s 𝐴))
3117, 30jaod 859 . . . 4 ((𝐴 ∈ Ons𝐵 No ) → ((( bday 𝐵) ∈ ( bday 𝐴) ∨ ( bday 𝐵) = ( bday 𝐴)) → 𝐵 ≤s 𝐴))
32 bdayelon 27686 . . . . . . 7 ( bday 𝐵) ∈ On
3332, 5onsseli 6429 . . . . . 6 (( bday 𝐵) ⊆ ( bday 𝐴) ↔ (( bday 𝐵) ∈ ( bday 𝐴) ∨ ( bday 𝐵) = ( bday 𝐴)))
34 ontri1 6341 . . . . . . 7 ((( bday 𝐵) ∈ On ∧ ( bday 𝐴) ∈ On) → (( bday 𝐵) ⊆ ( bday 𝐴) ↔ ¬ ( bday 𝐴) ∈ ( bday 𝐵)))
3532, 5, 34mp2an 692 . . . . . 6 (( bday 𝐵) ⊆ ( bday 𝐴) ↔ ¬ ( bday 𝐴) ∈ ( bday 𝐵))
3633, 35bitr3i 277 . . . . 5 ((( bday 𝐵) ∈ ( bday 𝐴) ∨ ( bday 𝐵) = ( bday 𝐴)) ↔ ¬ ( bday 𝐴) ∈ ( bday 𝐵))
3736a1i 11 . . . 4 ((𝐴 ∈ Ons𝐵 No ) → ((( bday 𝐵) ∈ ( bday 𝐴) ∨ ( bday 𝐵) = ( bday 𝐴)) ↔ ¬ ( bday 𝐴) ∈ ( bday 𝐵)))
38 slenlt 27662 . . . . 5 ((𝐵 No 𝐴 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
396, 3, 38syl2anc 584 . . . 4 ((𝐴 ∈ Ons𝐵 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
4031, 37, 393imtr3d 293 . . 3 ((𝐴 ∈ Ons𝐵 No ) → (¬ ( bday 𝐴) ∈ ( bday 𝐵) → ¬ 𝐴 <s 𝐵))
4140con4d 115 . 2 ((𝐴 ∈ Ons𝐵 No ) → (𝐴 <s 𝐵 → ( bday 𝐴) ∈ ( bday 𝐵)))
42413impia 1117 1 ((𝐴 ∈ Ons𝐵 No 𝐴 <s 𝐵) → ( bday 𝐴) ∈ ( bday 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wss 3903   class class class wbr 5092  Oncon0 6307  cfv 6482   No csur 27549   <s cslt 27550   bday cbday 27551   ≤s csle 27654   O cold 27755   L cleft 27757  Onscons 28159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-made 27759  df-old 27760  df-left 27762  df-right 27763  df-ons 28160
This theorem is referenced by:  onslt  28175  bdayn0p1  28265
  Copyright terms: Public domain W3C validator