Proof of Theorem onnolt
| Step | Hyp | Ref
| Expression |
| 1 | | simplr 768 |
. . . . . . 7
⊢ (((𝐴 ∈ Ons ∧
𝐵 ∈ No ) ∧ ( bday
‘𝐵) ∈
( bday ‘𝐴)) → 𝐵 ∈ No
) |
| 2 | | onsno 28208 |
. . . . . . . . 9
⊢ (𝐴 ∈ Ons →
𝐴 ∈ No ) |
| 3 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → 𝐴 ∈ No
) |
| 4 | 3 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ Ons ∧
𝐵 ∈ No ) ∧ ( bday
‘𝐵) ∈
( bday ‘𝐴)) → 𝐴 ∈ No
) |
| 5 | | bdayelon 27740 |
. . . . . . . . . . 11
⊢ ( bday ‘𝐴) ∈ On |
| 6 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → 𝐵 ∈ No
) |
| 7 | | oldbday 27864 |
. . . . . . . . . . 11
⊢ ((( bday ‘𝐴) ∈ On ∧ 𝐵 ∈ No )
→ (𝐵 ∈ ( O
‘( bday ‘𝐴)) ↔ ( bday
‘𝐵) ∈
( bday ‘𝐴))) |
| 8 | 5, 6, 7 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → (𝐵 ∈ ( O ‘(
bday ‘𝐴))
↔ ( bday ‘𝐵) ∈ ( bday
‘𝐴))) |
| 9 | | onsleft 28213 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Ons → (
O ‘( bday ‘𝐴)) = ( L ‘𝐴)) |
| 10 | 9 | eleq2d 2820 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Ons →
(𝐵 ∈ ( O ‘( bday ‘𝐴)) ↔ 𝐵 ∈ ( L ‘𝐴))) |
| 11 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → (𝐵 ∈ ( O ‘(
bday ‘𝐴))
↔ 𝐵 ∈ ( L
‘𝐴))) |
| 12 | 8, 11 | bitr3d 281 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → (( bday
‘𝐵) ∈
( bday ‘𝐴) ↔ 𝐵 ∈ ( L ‘𝐴))) |
| 13 | | leftlt 27827 |
. . . . . . . . 9
⊢ (𝐵 ∈ ( L ‘𝐴) → 𝐵 <s 𝐴) |
| 14 | 12, 13 | biimtrdi 253 |
. . . . . . . 8
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → (( bday
‘𝐵) ∈
( bday ‘𝐴) → 𝐵 <s 𝐴)) |
| 15 | 14 | imp 406 |
. . . . . . 7
⊢ (((𝐴 ∈ Ons ∧
𝐵 ∈ No ) ∧ ( bday
‘𝐵) ∈
( bday ‘𝐴)) → 𝐵 <s 𝐴) |
| 16 | 1, 4, 15 | sltled 27733 |
. . . . . 6
⊢ (((𝐴 ∈ Ons ∧
𝐵 ∈ No ) ∧ ( bday
‘𝐵) ∈
( bday ‘𝐴)) → 𝐵 ≤s 𝐴) |
| 17 | 16 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → (( bday
‘𝐵) ∈
( bday ‘𝐴) → 𝐵 ≤s 𝐴)) |
| 18 | | leftssold 27842 |
. . . . . . . 8
⊢ ( L
‘𝐵) ⊆ ( O
‘( bday ‘𝐵)) |
| 19 | | fveq2 6876 |
. . . . . . . . . 10
⊢ (( bday ‘𝐵) = ( bday
‘𝐴) → ( O
‘( bday ‘𝐵)) = ( O ‘( bday
‘𝐴))) |
| 20 | 19 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ∧ ( bday
‘𝐵) = ( bday ‘𝐴)) → ( O ‘(
bday ‘𝐵)) = (
O ‘( bday ‘𝐴))) |
| 21 | 9 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ∧ ( bday
‘𝐵) = ( bday ‘𝐴)) → ( O ‘(
bday ‘𝐴)) = (
L ‘𝐴)) |
| 22 | 20, 21 | eqtrd 2770 |
. . . . . . . 8
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ∧ ( bday
‘𝐵) = ( bday ‘𝐴)) → ( O ‘(
bday ‘𝐵)) = (
L ‘𝐴)) |
| 23 | 18, 22 | sseqtrid 4001 |
. . . . . . 7
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ∧ ( bday
‘𝐵) = ( bday ‘𝐴)) → ( L ‘𝐵) ⊆ ( L ‘𝐴)) |
| 24 | | simp2 1137 |
. . . . . . . 8
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ∧ ( bday
‘𝐵) = ( bday ‘𝐴)) → 𝐵 ∈ No
) |
| 25 | 2 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ∧ ( bday
‘𝐵) = ( bday ‘𝐴)) → 𝐴 ∈ No
) |
| 26 | | simp3 1138 |
. . . . . . . 8
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ∧ ( bday
‘𝐵) = ( bday ‘𝐴)) → ( bday
‘𝐵) = ( bday ‘𝐴)) |
| 27 | | slelss 27872 |
. . . . . . . 8
⊢ ((𝐵 ∈
No ∧ 𝐴 ∈
No ∧ ( bday
‘𝐵) = ( bday ‘𝐴)) → (𝐵 ≤s 𝐴 ↔ ( L ‘𝐵) ⊆ ( L ‘𝐴))) |
| 28 | 24, 25, 26, 27 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ∧ ( bday
‘𝐵) = ( bday ‘𝐴)) → (𝐵 ≤s 𝐴 ↔ ( L ‘𝐵) ⊆ ( L ‘𝐴))) |
| 29 | 23, 28 | mpbird 257 |
. . . . . 6
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ∧ ( bday
‘𝐵) = ( bday ‘𝐴)) → 𝐵 ≤s 𝐴) |
| 30 | 29 | 3expia 1121 |
. . . . 5
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → (( bday
‘𝐵) = ( bday ‘𝐴) → 𝐵 ≤s 𝐴)) |
| 31 | 17, 30 | jaod 859 |
. . . 4
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → ((( bday
‘𝐵) ∈
( bday ‘𝐴) ∨ ( bday
‘𝐵) = ( bday ‘𝐴)) → 𝐵 ≤s 𝐴)) |
| 32 | | bdayelon 27740 |
. . . . . . 7
⊢ ( bday ‘𝐵) ∈ On |
| 33 | 32, 5 | onsseli 6475 |
. . . . . 6
⊢ (( bday ‘𝐵) ⊆ ( bday
‘𝐴) ↔
(( bday ‘𝐵) ∈ ( bday
‘𝐴) ∨
( bday ‘𝐵) = ( bday
‘𝐴))) |
| 34 | | ontri1 6386 |
. . . . . . 7
⊢ ((( bday ‘𝐵) ∈ On ∧ (
bday ‘𝐴)
∈ On) → (( bday ‘𝐵) ⊆ ( bday
‘𝐴) ↔
¬ ( bday ‘𝐴) ∈ ( bday
‘𝐵))) |
| 35 | 32, 5, 34 | mp2an 692 |
. . . . . 6
⊢ (( bday ‘𝐵) ⊆ ( bday
‘𝐴) ↔
¬ ( bday ‘𝐴) ∈ ( bday
‘𝐵)) |
| 36 | 33, 35 | bitr3i 277 |
. . . . 5
⊢ ((( bday ‘𝐵) ∈ ( bday
‘𝐴) ∨
( bday ‘𝐵) = ( bday
‘𝐴)) ↔
¬ ( bday ‘𝐴) ∈ ( bday
‘𝐵)) |
| 37 | 36 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → ((( bday
‘𝐵) ∈
( bday ‘𝐴) ∨ ( bday
‘𝐵) = ( bday ‘𝐴)) ↔ ¬ ( bday
‘𝐴) ∈
( bday ‘𝐵))) |
| 38 | | slenlt 27716 |
. . . . 5
⊢ ((𝐵 ∈
No ∧ 𝐴 ∈
No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) |
| 39 | 6, 3, 38 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵)) |
| 40 | 31, 37, 39 | 3imtr3d 293 |
. . 3
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → (¬ ( bday
‘𝐴) ∈
( bday ‘𝐵) → ¬ 𝐴 <s 𝐵)) |
| 41 | 40 | con4d 115 |
. 2
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ) → (𝐴 <s 𝐵 → ( bday
‘𝐴) ∈
( bday ‘𝐵))) |
| 42 | 41 | 3impia 1117 |
1
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ No ∧ 𝐴 <s 𝐵) → ( bday
‘𝐴) ∈
( bday ‘𝐵)) |