MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnolt Structured version   Visualization version   GIF version

Theorem onnolt 28219
Description: If a surreal ordinal is less than a given surreal, then it is simpler. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
onnolt ((𝐴 ∈ Ons𝐵 No 𝐴 <s 𝐵) → ( bday 𝐴) ∈ ( bday 𝐵))

Proof of Theorem onnolt
StepHypRef Expression
1 simplr 768 . . . . . . 7 (((𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐵 No )
2 onsno 28208 . . . . . . . . 9 (𝐴 ∈ Ons𝐴 No )
32adantr 480 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ) → 𝐴 No )
43adantr 480 . . . . . . 7 (((𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐴 No )
5 bdayelon 27740 . . . . . . . . . . 11 ( bday 𝐴) ∈ On
6 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ Ons𝐵 No ) → 𝐵 No )
7 oldbday 27864 . . . . . . . . . . 11 ((( bday 𝐴) ∈ On ∧ 𝐵 No ) → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝐵) ∈ ( bday 𝐴)))
85, 6, 7sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ Ons𝐵 No ) → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝐵) ∈ ( bday 𝐴)))
9 onsleft 28213 . . . . . . . . . . . 12 (𝐴 ∈ Ons → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
109eleq2d 2820 . . . . . . . . . . 11 (𝐴 ∈ Ons → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ 𝐵 ∈ ( L ‘𝐴)))
1110adantr 480 . . . . . . . . . 10 ((𝐴 ∈ Ons𝐵 No ) → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ 𝐵 ∈ ( L ‘𝐴)))
128, 11bitr3d 281 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 No ) → (( bday 𝐵) ∈ ( bday 𝐴) ↔ 𝐵 ∈ ( L ‘𝐴)))
13 leftlt 27827 . . . . . . . . 9 (𝐵 ∈ ( L ‘𝐴) → 𝐵 <s 𝐴)
1412, 13biimtrdi 253 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ) → (( bday 𝐵) ∈ ( bday 𝐴) → 𝐵 <s 𝐴))
1514imp 406 . . . . . . 7 (((𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐵 <s 𝐴)
161, 4, 15sltled 27733 . . . . . 6 (((𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐵 ≤s 𝐴)
1716ex 412 . . . . 5 ((𝐴 ∈ Ons𝐵 No ) → (( bday 𝐵) ∈ ( bday 𝐴) → 𝐵 ≤s 𝐴))
18 leftssold 27842 . . . . . . . 8 ( L ‘𝐵) ⊆ ( O ‘( bday 𝐵))
19 fveq2 6876 . . . . . . . . . 10 (( bday 𝐵) = ( bday 𝐴) → ( O ‘( bday 𝐵)) = ( O ‘( bday 𝐴)))
20193ad2ant3 1135 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( O ‘( bday 𝐵)) = ( O ‘( bday 𝐴)))
2193ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
2220, 21eqtrd 2770 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( O ‘( bday 𝐵)) = ( L ‘𝐴))
2318, 22sseqtrid 4001 . . . . . . 7 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( L ‘𝐵) ⊆ ( L ‘𝐴))
24 simp2 1137 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → 𝐵 No )
2523ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → 𝐴 No )
26 simp3 1138 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( bday 𝐵) = ( bday 𝐴))
27 slelss 27872 . . . . . . . 8 ((𝐵 No 𝐴 No ∧ ( bday 𝐵) = ( bday 𝐴)) → (𝐵 ≤s 𝐴 ↔ ( L ‘𝐵) ⊆ ( L ‘𝐴)))
2824, 25, 26, 27syl3anc 1373 . . . . . . 7 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → (𝐵 ≤s 𝐴 ↔ ( L ‘𝐵) ⊆ ( L ‘𝐴)))
2923, 28mpbird 257 . . . . . 6 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → 𝐵 ≤s 𝐴)
30293expia 1121 . . . . 5 ((𝐴 ∈ Ons𝐵 No ) → (( bday 𝐵) = ( bday 𝐴) → 𝐵 ≤s 𝐴))
3117, 30jaod 859 . . . 4 ((𝐴 ∈ Ons𝐵 No ) → ((( bday 𝐵) ∈ ( bday 𝐴) ∨ ( bday 𝐵) = ( bday 𝐴)) → 𝐵 ≤s 𝐴))
32 bdayelon 27740 . . . . . . 7 ( bday 𝐵) ∈ On
3332, 5onsseli 6475 . . . . . 6 (( bday 𝐵) ⊆ ( bday 𝐴) ↔ (( bday 𝐵) ∈ ( bday 𝐴) ∨ ( bday 𝐵) = ( bday 𝐴)))
34 ontri1 6386 . . . . . . 7 ((( bday 𝐵) ∈ On ∧ ( bday 𝐴) ∈ On) → (( bday 𝐵) ⊆ ( bday 𝐴) ↔ ¬ ( bday 𝐴) ∈ ( bday 𝐵)))
3532, 5, 34mp2an 692 . . . . . 6 (( bday 𝐵) ⊆ ( bday 𝐴) ↔ ¬ ( bday 𝐴) ∈ ( bday 𝐵))
3633, 35bitr3i 277 . . . . 5 ((( bday 𝐵) ∈ ( bday 𝐴) ∨ ( bday 𝐵) = ( bday 𝐴)) ↔ ¬ ( bday 𝐴) ∈ ( bday 𝐵))
3736a1i 11 . . . 4 ((𝐴 ∈ Ons𝐵 No ) → ((( bday 𝐵) ∈ ( bday 𝐴) ∨ ( bday 𝐵) = ( bday 𝐴)) ↔ ¬ ( bday 𝐴) ∈ ( bday 𝐵)))
38 slenlt 27716 . . . . 5 ((𝐵 No 𝐴 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
396, 3, 38syl2anc 584 . . . 4 ((𝐴 ∈ Ons𝐵 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
4031, 37, 393imtr3d 293 . . 3 ((𝐴 ∈ Ons𝐵 No ) → (¬ ( bday 𝐴) ∈ ( bday 𝐵) → ¬ 𝐴 <s 𝐵))
4140con4d 115 . 2 ((𝐴 ∈ Ons𝐵 No ) → (𝐴 <s 𝐵 → ( bday 𝐴) ∈ ( bday 𝐵)))
42413impia 1117 1 ((𝐴 ∈ Ons𝐵 No 𝐴 <s 𝐵) → ( bday 𝐴) ∈ ( bday 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wss 3926   class class class wbr 5119  Oncon0 6352  cfv 6531   No csur 27603   <s cslt 27604   bday cbday 27605   ≤s csle 27708   O cold 27803   L cleft 27805  Onscons 28204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-ons 28205
This theorem is referenced by:  onslt  28220  bdayn0p1  28310
  Copyright terms: Public domain W3C validator