MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnolt Structured version   Visualization version   GIF version

Theorem onnolt 28203
Description: If a surreal ordinal is less than a given surreal, then it is simpler. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
onnolt ((𝐴 ∈ Ons𝐵 No 𝐴 <s 𝐵) → ( bday 𝐴) ∈ ( bday 𝐵))

Proof of Theorem onnolt
StepHypRef Expression
1 simplr 768 . . . . . . 7 (((𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐵 No )
2 onsno 28192 . . . . . . . . 9 (𝐴 ∈ Ons𝐴 No )
32adantr 480 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ) → 𝐴 No )
43adantr 480 . . . . . . 7 (((𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐴 No )
5 bdayelon 27715 . . . . . . . . . . 11 ( bday 𝐴) ∈ On
6 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ Ons𝐵 No ) → 𝐵 No )
7 oldbday 27846 . . . . . . . . . . 11 ((( bday 𝐴) ∈ On ∧ 𝐵 No ) → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝐵) ∈ ( bday 𝐴)))
85, 6, 7sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ Ons𝐵 No ) → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝐵) ∈ ( bday 𝐴)))
9 onsleft 28197 . . . . . . . . . . . 12 (𝐴 ∈ Ons → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
109eleq2d 2817 . . . . . . . . . . 11 (𝐴 ∈ Ons → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ 𝐵 ∈ ( L ‘𝐴)))
1110adantr 480 . . . . . . . . . 10 ((𝐴 ∈ Ons𝐵 No ) → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ 𝐵 ∈ ( L ‘𝐴)))
128, 11bitr3d 281 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 No ) → (( bday 𝐵) ∈ ( bday 𝐴) ↔ 𝐵 ∈ ( L ‘𝐴)))
13 leftlt 27808 . . . . . . . . 9 (𝐵 ∈ ( L ‘𝐴) → 𝐵 <s 𝐴)
1412, 13biimtrdi 253 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ) → (( bday 𝐵) ∈ ( bday 𝐴) → 𝐵 <s 𝐴))
1514imp 406 . . . . . . 7 (((𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐵 <s 𝐴)
161, 4, 15sltled 27708 . . . . . 6 (((𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐵 ≤s 𝐴)
1716ex 412 . . . . 5 ((𝐴 ∈ Ons𝐵 No ) → (( bday 𝐵) ∈ ( bday 𝐴) → 𝐵 ≤s 𝐴))
18 leftssold 27824 . . . . . . . 8 ( L ‘𝐵) ⊆ ( O ‘( bday 𝐵))
19 fveq2 6822 . . . . . . . . . 10 (( bday 𝐵) = ( bday 𝐴) → ( O ‘( bday 𝐵)) = ( O ‘( bday 𝐴)))
20193ad2ant3 1135 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( O ‘( bday 𝐵)) = ( O ‘( bday 𝐴)))
2193ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( O ‘( bday 𝐴)) = ( L ‘𝐴))
2220, 21eqtrd 2766 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( O ‘( bday 𝐵)) = ( L ‘𝐴))
2318, 22sseqtrid 3972 . . . . . . 7 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( L ‘𝐵) ⊆ ( L ‘𝐴))
24 simp2 1137 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → 𝐵 No )
2523ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → 𝐴 No )
26 simp3 1138 . . . . . . . 8 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → ( bday 𝐵) = ( bday 𝐴))
27 slelss 27854 . . . . . . . 8 ((𝐵 No 𝐴 No ∧ ( bday 𝐵) = ( bday 𝐴)) → (𝐵 ≤s 𝐴 ↔ ( L ‘𝐵) ⊆ ( L ‘𝐴)))
2824, 25, 26, 27syl3anc 1373 . . . . . . 7 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → (𝐵 ≤s 𝐴 ↔ ( L ‘𝐵) ⊆ ( L ‘𝐴)))
2923, 28mpbird 257 . . . . . 6 ((𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵) = ( bday 𝐴)) → 𝐵 ≤s 𝐴)
30293expia 1121 . . . . 5 ((𝐴 ∈ Ons𝐵 No ) → (( bday 𝐵) = ( bday 𝐴) → 𝐵 ≤s 𝐴))
3117, 30jaod 859 . . . 4 ((𝐴 ∈ Ons𝐵 No ) → ((( bday 𝐵) ∈ ( bday 𝐴) ∨ ( bday 𝐵) = ( bday 𝐴)) → 𝐵 ≤s 𝐴))
32 bdayelon 27715 . . . . . . 7 ( bday 𝐵) ∈ On
3332, 5onsseli 6428 . . . . . 6 (( bday 𝐵) ⊆ ( bday 𝐴) ↔ (( bday 𝐵) ∈ ( bday 𝐴) ∨ ( bday 𝐵) = ( bday 𝐴)))
34 ontri1 6340 . . . . . . 7 ((( bday 𝐵) ∈ On ∧ ( bday 𝐴) ∈ On) → (( bday 𝐵) ⊆ ( bday 𝐴) ↔ ¬ ( bday 𝐴) ∈ ( bday 𝐵)))
3532, 5, 34mp2an 692 . . . . . 6 (( bday 𝐵) ⊆ ( bday 𝐴) ↔ ¬ ( bday 𝐴) ∈ ( bday 𝐵))
3633, 35bitr3i 277 . . . . 5 ((( bday 𝐵) ∈ ( bday 𝐴) ∨ ( bday 𝐵) = ( bday 𝐴)) ↔ ¬ ( bday 𝐴) ∈ ( bday 𝐵))
3736a1i 11 . . . 4 ((𝐴 ∈ Ons𝐵 No ) → ((( bday 𝐵) ∈ ( bday 𝐴) ∨ ( bday 𝐵) = ( bday 𝐴)) ↔ ¬ ( bday 𝐴) ∈ ( bday 𝐵)))
38 slenlt 27691 . . . . 5 ((𝐵 No 𝐴 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
396, 3, 38syl2anc 584 . . . 4 ((𝐴 ∈ Ons𝐵 No ) → (𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵))
4031, 37, 393imtr3d 293 . . 3 ((𝐴 ∈ Ons𝐵 No ) → (¬ ( bday 𝐴) ∈ ( bday 𝐵) → ¬ 𝐴 <s 𝐵))
4140con4d 115 . 2 ((𝐴 ∈ Ons𝐵 No ) → (𝐴 <s 𝐵 → ( bday 𝐴) ∈ ( bday 𝐵)))
42413impia 1117 1 ((𝐴 ∈ Ons𝐵 No 𝐴 <s 𝐵) → ( bday 𝐴) ∈ ( bday 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wss 3897   class class class wbr 5089  Oncon0 6306  cfv 6481   No csur 27578   <s cslt 27579   bday cbday 27580   ≤s csle 27683   O cold 27784   L cleft 27786  Onscons 28188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-ons 28189
This theorem is referenced by:  onslt  28204  bdayn0p1  28294
  Copyright terms: Public domain W3C validator