MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsiso Structured version   Visualization version   GIF version

Theorem onsiso 28221
Description: The birthday function restricted to the surreal ordinals forms an order-preserving isomorphism with the regular ordinals. (Contributed by Scott Fenton, 8-Nov-2025.)
Assertion
Ref Expression
onsiso ( bday ↾ Ons) Isom <s , E (Ons, On)

Proof of Theorem onsiso
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdayfun 27736 . . . . . . 7 Fun bday
2 funres 6578 . . . . . . 7 (Fun bday → Fun ( bday ↾ Ons))
31, 2ax-mp 5 . . . . . 6 Fun ( bday ↾ Ons)
4 dmres 5999 . . . . . . 7 dom ( bday ↾ Ons) = (Ons ∩ dom bday )
5 bdaydm 27738 . . . . . . . 8 dom bday = No
65ineq2i 4192 . . . . . . 7 (Ons ∩ dom bday ) = (Ons No )
7 onssno 28207 . . . . . . . 8 Ons No
8 dfss2 3944 . . . . . . . 8 (Ons No ↔ (Ons No ) = Ons)
97, 8mpbi 230 . . . . . . 7 (Ons No ) = Ons
104, 6, 93eqtri 2762 . . . . . 6 dom ( bday ↾ Ons) = Ons
11 df-fn 6534 . . . . . 6 (( bday ↾ Ons) Fn Ons ↔ (Fun ( bday ↾ Ons) ∧ dom ( bday ↾ Ons) = Ons))
123, 10, 11mpbir2an 711 . . . . 5 ( bday ↾ Ons) Fn Ons
13 rnresss 6004 . . . . . 6 ran ( bday ↾ Ons) ⊆ ran bday
14 bdayrn 27739 . . . . . 6 ran bday = On
1513, 14sseqtri 4007 . . . . 5 ran ( bday ↾ Ons) ⊆ On
16 df-f 6535 . . . . 5 (( bday ↾ Ons):Ons⟶On ↔ (( bday ↾ Ons) Fn Ons ∧ ran ( bday ↾ Ons) ⊆ On))
1712, 15, 16mpbir2an 711 . . . 4 ( bday ↾ Ons):Ons⟶On
18 fvres 6895 . . . . . . 7 (𝑥 ∈ Ons → (( bday ↾ Ons)‘𝑥) = ( bday 𝑥))
19 fvres 6895 . . . . . . 7 (𝑦 ∈ Ons → (( bday ↾ Ons)‘𝑦) = ( bday 𝑦))
2018, 19eqeqan12d 2749 . . . . . 6 ((𝑥 ∈ Ons𝑦 ∈ Ons) → ((( bday ↾ Ons)‘𝑥) = (( bday ↾ Ons)‘𝑦) ↔ ( bday 𝑥) = ( bday 𝑦)))
21 bday11on 28218 . . . . . . 7 ((𝑥 ∈ Ons𝑦 ∈ Ons ∧ ( bday 𝑥) = ( bday 𝑦)) → 𝑥 = 𝑦)
22213expia 1121 . . . . . 6 ((𝑥 ∈ Ons𝑦 ∈ Ons) → (( bday 𝑥) = ( bday 𝑦) → 𝑥 = 𝑦))
2320, 22sylbid 240 . . . . 5 ((𝑥 ∈ Ons𝑦 ∈ Ons) → ((( bday ↾ Ons)‘𝑥) = (( bday ↾ Ons)‘𝑦) → 𝑥 = 𝑦))
2423rgen2 3184 . . . 4 𝑥 ∈ Ons𝑦 ∈ Ons ((( bday ↾ Ons)‘𝑥) = (( bday ↾ Ons)‘𝑦) → 𝑥 = 𝑦)
25 dff13 7247 . . . 4 (( bday ↾ Ons):Ons1-1→On ↔ (( bday ↾ Ons):Ons⟶On ∧ ∀𝑥 ∈ Ons𝑦 ∈ Ons ((( bday ↾ Ons)‘𝑥) = (( bday ↾ Ons)‘𝑦) → 𝑥 = 𝑦)))
2617, 24, 25mpbir2an 711 . . 3 ( bday ↾ Ons):Ons1-1→On
27 fveqeq2 6885 . . . . . . . 8 (𝑦 = (( O ‘𝑥) |s ∅) → ((( bday ↾ Ons)‘𝑦) = 𝑥 ↔ (( bday ↾ Ons)‘(( O ‘𝑥) |s ∅)) = 𝑥))
28 fvex 6889 . . . . . . . . . 10 ( O ‘𝑥) ∈ V
2928a1i 11 . . . . . . . . 9 (𝑥 ∈ On → ( O ‘𝑥) ∈ V)
30 oldssno 27821 . . . . . . . . . 10 ( O ‘𝑥) ⊆ No
3130a1i 11 . . . . . . . . 9 (𝑥 ∈ On → ( O ‘𝑥) ⊆ No )
32 eqidd 2736 . . . . . . . . 9 (𝑥 ∈ On → (( O ‘𝑥) |s ∅) = (( O ‘𝑥) |s ∅))
3329, 31, 32elons2d 28212 . . . . . . . 8 (𝑥 ∈ On → (( O ‘𝑥) |s ∅) ∈ Ons)
3433fvresd 6896 . . . . . . . . 9 (𝑥 ∈ On → (( bday ↾ Ons)‘(( O ‘𝑥) |s ∅)) = ( bday ‘(( O ‘𝑥) |s ∅)))
3528elpw 4579 . . . . . . . . . . . . 13 (( O ‘𝑥) ∈ 𝒫 No ↔ ( O ‘𝑥) ⊆ No )
3630, 35mpbir 231 . . . . . . . . . . . 12 ( O ‘𝑥) ∈ 𝒫 No
37 nulssgt 27762 . . . . . . . . . . . 12 (( O ‘𝑥) ∈ 𝒫 No → ( O ‘𝑥) <<s ∅)
3836, 37ax-mp 5 . . . . . . . . . . 11 ( O ‘𝑥) <<s ∅
39 id 22 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥 ∈ On)
40 un0 4369 . . . . . . . . . . . . 13 (( O ‘𝑥) ∪ ∅) = ( O ‘𝑥)
4140imaeq2i 6045 . . . . . . . . . . . 12 ( bday “ (( O ‘𝑥) ∪ ∅)) = ( bday “ ( O ‘𝑥))
42 oldbdayim 27852 . . . . . . . . . . . . . . 15 (𝑦 ∈ ( O ‘𝑥) → ( bday 𝑦) ∈ 𝑥)
4342rgen 3053 . . . . . . . . . . . . . 14 𝑦 ∈ ( O ‘𝑥)( bday 𝑦) ∈ 𝑥
4443a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ On → ∀𝑦 ∈ ( O ‘𝑥)( bday 𝑦) ∈ 𝑥)
4530, 5sseqtrri 4008 . . . . . . . . . . . . . 14 ( O ‘𝑥) ⊆ dom bday
46 funimass4 6943 . . . . . . . . . . . . . 14 ((Fun bday ∧ ( O ‘𝑥) ⊆ dom bday ) → (( bday “ ( O ‘𝑥)) ⊆ 𝑥 ↔ ∀𝑦 ∈ ( O ‘𝑥)( bday 𝑦) ∈ 𝑥))
471, 45, 46mp2an 692 . . . . . . . . . . . . 13 (( bday “ ( O ‘𝑥)) ⊆ 𝑥 ↔ ∀𝑦 ∈ ( O ‘𝑥)( bday 𝑦) ∈ 𝑥)
4844, 47sylibr 234 . . . . . . . . . . . 12 (𝑥 ∈ On → ( bday “ ( O ‘𝑥)) ⊆ 𝑥)
4941, 48eqsstrid 3997 . . . . . . . . . . 11 (𝑥 ∈ On → ( bday “ (( O ‘𝑥) ∪ ∅)) ⊆ 𝑥)
50 scutbdaybnd 27779 . . . . . . . . . . 11 ((( O ‘𝑥) <<s ∅ ∧ 𝑥 ∈ On ∧ ( bday “ (( O ‘𝑥) ∪ ∅)) ⊆ 𝑥) → ( bday ‘(( O ‘𝑥) |s ∅)) ⊆ 𝑥)
5138, 39, 49, 50mp3an2i 1468 . . . . . . . . . 10 (𝑥 ∈ On → ( bday ‘(( O ‘𝑥) |s ∅)) ⊆ 𝑥)
52 ssltsep 27754 . . . . . . . . . . . . . . . 16 (( O ‘𝑥) <<s {𝑤} → ∀𝑦 ∈ ( O ‘𝑥)∀𝑧 ∈ {𝑤}𝑦 <s 𝑧)
53 vex 3463 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ V
54 breq2 5123 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → (𝑦 <s 𝑧𝑦 <s 𝑤))
5553, 54ralsn 4657 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ {𝑤}𝑦 <s 𝑧𝑦 <s 𝑤)
5655ralbii 3082 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ ( O ‘𝑥)∀𝑧 ∈ {𝑤}𝑦 <s 𝑧 ↔ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤)
5752, 56sylib 218 . . . . . . . . . . . . . . 15 (( O ‘𝑥) <<s {𝑤} → ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤)
58 sltirr 27710 . . . . . . . . . . . . . . . . . . 19 (𝑤 No → ¬ 𝑤 <s 𝑤)
59583ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → ¬ 𝑤 <s 𝑤)
60 oldbday 27864 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ On ∧ 𝑤 No ) → (𝑤 ∈ ( O ‘𝑥) ↔ ( bday 𝑤) ∈ 𝑥))
61603adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → (𝑤 ∈ ( O ‘𝑥) ↔ ( bday 𝑤) ∈ 𝑥))
62 breq1 5122 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → (𝑦 <s 𝑤𝑤 <s 𝑤))
6362rspccv 3598 . . . . . . . . . . . . . . . . . . . 20 (∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤 → (𝑤 ∈ ( O ‘𝑥) → 𝑤 <s 𝑤))
64633ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → (𝑤 ∈ ( O ‘𝑥) → 𝑤 <s 𝑤))
6561, 64sylbird 260 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → (( bday 𝑤) ∈ 𝑥𝑤 <s 𝑤))
6659, 65mtod 198 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → ¬ ( bday 𝑤) ∈ 𝑥)
67 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → 𝑥 ∈ On)
68 bdayelon 27740 . . . . . . . . . . . . . . . . . 18 ( bday 𝑤) ∈ On
69 ontri1 6386 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ ( bday 𝑤) ∈ On) → (𝑥 ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ 𝑥))
7067, 68, 69sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → (𝑥 ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ 𝑥))
7166, 70mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → 𝑥 ⊆ ( bday 𝑤))
72713expia 1121 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑤 No ) → (∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤𝑥 ⊆ ( bday 𝑤)))
7357, 72syl5 34 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑤 No ) → (( O ‘𝑥) <<s {𝑤} → 𝑥 ⊆ ( bday 𝑤)))
7473adantrd 491 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑤 No ) → ((( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅) → 𝑥 ⊆ ( bday 𝑤)))
7574ralrimiva 3132 . . . . . . . . . . . 12 (𝑥 ∈ On → ∀𝑤 No ((( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅) → 𝑥 ⊆ ( bday 𝑤)))
76 ssint 4940 . . . . . . . . . . . . 13 (𝑥 ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}) ↔ ∀𝑧 ∈ ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)})𝑥𝑧)
77 bdayfn 27737 . . . . . . . . . . . . . 14 bday Fn No
78 ssrab2 4055 . . . . . . . . . . . . . 14 {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)} ⊆ No
79 sseq2 3985 . . . . . . . . . . . . . . 15 (𝑧 = ( bday 𝑤) → (𝑥𝑧𝑥 ⊆ ( bday 𝑤)))
8079ralima 7229 . . . . . . . . . . . . . 14 (( bday Fn No ∧ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)} ⊆ No ) → (∀𝑧 ∈ ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)})𝑥𝑧 ↔ ∀𝑤 ∈ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}𝑥 ⊆ ( bday 𝑤)))
8177, 78, 80mp2an 692 . . . . . . . . . . . . 13 (∀𝑧 ∈ ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)})𝑥𝑧 ↔ ∀𝑤 ∈ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}𝑥 ⊆ ( bday 𝑤))
82 sneq 4611 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → {𝑦} = {𝑤})
8382breq2d 5131 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → (( O ‘𝑥) <<s {𝑦} ↔ ( O ‘𝑥) <<s {𝑤}))
8482breq1d 5129 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ({𝑦} <<s ∅ ↔ {𝑤} <<s ∅))
8583, 84anbi12d 632 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → ((( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅) ↔ (( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅)))
8685ralrab 3677 . . . . . . . . . . . . 13 (∀𝑤 ∈ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}𝑥 ⊆ ( bday 𝑤) ↔ ∀𝑤 No ((( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅) → 𝑥 ⊆ ( bday 𝑤)))
8776, 81, 863bitri 297 . . . . . . . . . . . 12 (𝑥 ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}) ↔ ∀𝑤 No ((( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅) → 𝑥 ⊆ ( bday 𝑤)))
8875, 87sylibr 234 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥 ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}))
89 scutbday 27768 . . . . . . . . . . . 12 (( O ‘𝑥) <<s ∅ → ( bday ‘(( O ‘𝑥) |s ∅)) = ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}))
9038, 89ax-mp 5 . . . . . . . . . . 11 ( bday ‘(( O ‘𝑥) |s ∅)) = ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)})
9188, 90sseqtrrdi 4000 . . . . . . . . . 10 (𝑥 ∈ On → 𝑥 ⊆ ( bday ‘(( O ‘𝑥) |s ∅)))
9251, 91eqssd 3976 . . . . . . . . 9 (𝑥 ∈ On → ( bday ‘(( O ‘𝑥) |s ∅)) = 𝑥)
9334, 92eqtrd 2770 . . . . . . . 8 (𝑥 ∈ On → (( bday ↾ Ons)‘(( O ‘𝑥) |s ∅)) = 𝑥)
9427, 33, 93rspcedvdw 3604 . . . . . . 7 (𝑥 ∈ On → ∃𝑦 ∈ Ons (( bday ↾ Ons)‘𝑦) = 𝑥)
95 fvelrnb 6939 . . . . . . . 8 (( bday ↾ Ons) Fn Ons → (𝑥 ∈ ran ( bday ↾ Ons) ↔ ∃𝑦 ∈ Ons (( bday ↾ Ons)‘𝑦) = 𝑥))
9612, 95ax-mp 5 . . . . . . 7 (𝑥 ∈ ran ( bday ↾ Ons) ↔ ∃𝑦 ∈ Ons (( bday ↾ Ons)‘𝑦) = 𝑥)
9794, 96sylibr 234 . . . . . 6 (𝑥 ∈ On → 𝑥 ∈ ran ( bday ↾ Ons))
9897ssriv 3962 . . . . 5 On ⊆ ran ( bday ↾ Ons)
9915, 98eqssi 3975 . . . 4 ran ( bday ↾ Ons) = On
100 df-fo 6537 . . . 4 (( bday ↾ Ons):Onsonto→On ↔ (( bday ↾ Ons) Fn Ons ∧ ran ( bday ↾ Ons) = On))
10112, 99, 100mpbir2an 711 . . 3 ( bday ↾ Ons):Onsonto→On
102 df-f1o 6538 . . 3 (( bday ↾ Ons):Ons1-1-onto→On ↔ (( bday ↾ Ons):Ons1-1→On ∧ ( bday ↾ Ons):Onsonto→On))
10326, 101, 102mpbir2an 711 . 2 ( bday ↾ Ons):Ons1-1-onto→On
104 onslt 28220 . . . . 5 ((𝑥 ∈ Ons𝑦 ∈ Ons) → (𝑥 <s 𝑦 ↔ ( bday 𝑥) ∈ ( bday 𝑦)))
105 fvex 6889 . . . . . 6 ( bday 𝑦) ∈ V
106105epeli 5555 . . . . 5 (( bday 𝑥) E ( bday 𝑦) ↔ ( bday 𝑥) ∈ ( bday 𝑦))
107104, 106bitr4di 289 . . . 4 ((𝑥 ∈ Ons𝑦 ∈ Ons) → (𝑥 <s 𝑦 ↔ ( bday 𝑥) E ( bday 𝑦)))
10818, 19breqan12d 5135 . . . 4 ((𝑥 ∈ Ons𝑦 ∈ Ons) → ((( bday ↾ Ons)‘𝑥) E (( bday ↾ Ons)‘𝑦) ↔ ( bday 𝑥) E ( bday 𝑦)))
109107, 108bitr4d 282 . . 3 ((𝑥 ∈ Ons𝑦 ∈ Ons) → (𝑥 <s 𝑦 ↔ (( bday ↾ Ons)‘𝑥) E (( bday ↾ Ons)‘𝑦)))
110109rgen2 3184 . 2 𝑥 ∈ Ons𝑦 ∈ Ons (𝑥 <s 𝑦 ↔ (( bday ↾ Ons)‘𝑥) E (( bday ↾ Ons)‘𝑦))
111 df-isom 6540 . 2 (( bday ↾ Ons) Isom <s , E (Ons, On) ↔ (( bday ↾ Ons):Ons1-1-onto→On ∧ ∀𝑥 ∈ Ons𝑦 ∈ Ons (𝑥 <s 𝑦 ↔ (( bday ↾ Ons)‘𝑥) E (( bday ↾ Ons)‘𝑦))))
112103, 110, 111mpbir2an 711 1 ( bday ↾ Ons) Isom <s , E (Ons, On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cint 4922   class class class wbr 5119   E cep 5552  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Oncon0 6352  Fun wfun 6525   Fn wfn 6526  wf 6527  1-1wf1 6528  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531   Isom wiso 6532  (class class class)co 7405   No csur 27603   <s cslt 27604   bday cbday 27605   <<s csslt 27744   |s cscut 27746   O cold 27803  Onscons 28204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-ons 28205
This theorem is referenced by:  onswe  28222  onsse  28223
  Copyright terms: Public domain W3C validator