MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsiso Structured version   Visualization version   GIF version

Theorem onsiso 28176
Description: The birthday function restricted to the surreal ordinals forms an order-preserving isomorphism with the regular ordinals. (Contributed by Scott Fenton, 8-Nov-2025.)
Assertion
Ref Expression
onsiso ( bday ↾ Ons) Isom <s , E (Ons, On)

Proof of Theorem onsiso
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdayfun 27691 . . . . . . 7 Fun bday
2 funres 6561 . . . . . . 7 (Fun bday → Fun ( bday ↾ Ons))
31, 2ax-mp 5 . . . . . 6 Fun ( bday ↾ Ons)
4 dmres 5986 . . . . . . 7 dom ( bday ↾ Ons) = (Ons ∩ dom bday )
5 bdaydm 27693 . . . . . . . 8 dom bday = No
65ineq2i 4183 . . . . . . 7 (Ons ∩ dom bday ) = (Ons No )
7 onssno 28162 . . . . . . . 8 Ons No
8 dfss2 3935 . . . . . . . 8 (Ons No ↔ (Ons No ) = Ons)
97, 8mpbi 230 . . . . . . 7 (Ons No ) = Ons
104, 6, 93eqtri 2757 . . . . . 6 dom ( bday ↾ Ons) = Ons
11 df-fn 6517 . . . . . 6 (( bday ↾ Ons) Fn Ons ↔ (Fun ( bday ↾ Ons) ∧ dom ( bday ↾ Ons) = Ons))
123, 10, 11mpbir2an 711 . . . . 5 ( bday ↾ Ons) Fn Ons
13 rnresss 5991 . . . . . 6 ran ( bday ↾ Ons) ⊆ ran bday
14 bdayrn 27694 . . . . . 6 ran bday = On
1513, 14sseqtri 3998 . . . . 5 ran ( bday ↾ Ons) ⊆ On
16 df-f 6518 . . . . 5 (( bday ↾ Ons):Ons⟶On ↔ (( bday ↾ Ons) Fn Ons ∧ ran ( bday ↾ Ons) ⊆ On))
1712, 15, 16mpbir2an 711 . . . 4 ( bday ↾ Ons):Ons⟶On
18 fvres 6880 . . . . . . 7 (𝑥 ∈ Ons → (( bday ↾ Ons)‘𝑥) = ( bday 𝑥))
19 fvres 6880 . . . . . . 7 (𝑦 ∈ Ons → (( bday ↾ Ons)‘𝑦) = ( bday 𝑦))
2018, 19eqeqan12d 2744 . . . . . 6 ((𝑥 ∈ Ons𝑦 ∈ Ons) → ((( bday ↾ Ons)‘𝑥) = (( bday ↾ Ons)‘𝑦) ↔ ( bday 𝑥) = ( bday 𝑦)))
21 bday11on 28173 . . . . . . 7 ((𝑥 ∈ Ons𝑦 ∈ Ons ∧ ( bday 𝑥) = ( bday 𝑦)) → 𝑥 = 𝑦)
22213expia 1121 . . . . . 6 ((𝑥 ∈ Ons𝑦 ∈ Ons) → (( bday 𝑥) = ( bday 𝑦) → 𝑥 = 𝑦))
2320, 22sylbid 240 . . . . 5 ((𝑥 ∈ Ons𝑦 ∈ Ons) → ((( bday ↾ Ons)‘𝑥) = (( bday ↾ Ons)‘𝑦) → 𝑥 = 𝑦))
2423rgen2 3178 . . . 4 𝑥 ∈ Ons𝑦 ∈ Ons ((( bday ↾ Ons)‘𝑥) = (( bday ↾ Ons)‘𝑦) → 𝑥 = 𝑦)
25 dff13 7232 . . . 4 (( bday ↾ Ons):Ons1-1→On ↔ (( bday ↾ Ons):Ons⟶On ∧ ∀𝑥 ∈ Ons𝑦 ∈ Ons ((( bday ↾ Ons)‘𝑥) = (( bday ↾ Ons)‘𝑦) → 𝑥 = 𝑦)))
2617, 24, 25mpbir2an 711 . . 3 ( bday ↾ Ons):Ons1-1→On
27 fveqeq2 6870 . . . . . . . 8 (𝑦 = (( O ‘𝑥) |s ∅) → ((( bday ↾ Ons)‘𝑦) = 𝑥 ↔ (( bday ↾ Ons)‘(( O ‘𝑥) |s ∅)) = 𝑥))
28 fvex 6874 . . . . . . . . . 10 ( O ‘𝑥) ∈ V
2928a1i 11 . . . . . . . . 9 (𝑥 ∈ On → ( O ‘𝑥) ∈ V)
30 oldssno 27776 . . . . . . . . . 10 ( O ‘𝑥) ⊆ No
3130a1i 11 . . . . . . . . 9 (𝑥 ∈ On → ( O ‘𝑥) ⊆ No )
32 eqidd 2731 . . . . . . . . 9 (𝑥 ∈ On → (( O ‘𝑥) |s ∅) = (( O ‘𝑥) |s ∅))
3329, 31, 32elons2d 28167 . . . . . . . 8 (𝑥 ∈ On → (( O ‘𝑥) |s ∅) ∈ Ons)
3433fvresd 6881 . . . . . . . . 9 (𝑥 ∈ On → (( bday ↾ Ons)‘(( O ‘𝑥) |s ∅)) = ( bday ‘(( O ‘𝑥) |s ∅)))
3528elpw 4570 . . . . . . . . . . . . 13 (( O ‘𝑥) ∈ 𝒫 No ↔ ( O ‘𝑥) ⊆ No )
3630, 35mpbir 231 . . . . . . . . . . . 12 ( O ‘𝑥) ∈ 𝒫 No
37 nulssgt 27717 . . . . . . . . . . . 12 (( O ‘𝑥) ∈ 𝒫 No → ( O ‘𝑥) <<s ∅)
3836, 37ax-mp 5 . . . . . . . . . . 11 ( O ‘𝑥) <<s ∅
39 id 22 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥 ∈ On)
40 un0 4360 . . . . . . . . . . . . 13 (( O ‘𝑥) ∪ ∅) = ( O ‘𝑥)
4140imaeq2i 6032 . . . . . . . . . . . 12 ( bday “ (( O ‘𝑥) ∪ ∅)) = ( bday “ ( O ‘𝑥))
42 oldbdayim 27807 . . . . . . . . . . . . . . 15 (𝑦 ∈ ( O ‘𝑥) → ( bday 𝑦) ∈ 𝑥)
4342rgen 3047 . . . . . . . . . . . . . 14 𝑦 ∈ ( O ‘𝑥)( bday 𝑦) ∈ 𝑥
4443a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ On → ∀𝑦 ∈ ( O ‘𝑥)( bday 𝑦) ∈ 𝑥)
4530, 5sseqtrri 3999 . . . . . . . . . . . . . 14 ( O ‘𝑥) ⊆ dom bday
46 funimass4 6928 . . . . . . . . . . . . . 14 ((Fun bday ∧ ( O ‘𝑥) ⊆ dom bday ) → (( bday “ ( O ‘𝑥)) ⊆ 𝑥 ↔ ∀𝑦 ∈ ( O ‘𝑥)( bday 𝑦) ∈ 𝑥))
471, 45, 46mp2an 692 . . . . . . . . . . . . 13 (( bday “ ( O ‘𝑥)) ⊆ 𝑥 ↔ ∀𝑦 ∈ ( O ‘𝑥)( bday 𝑦) ∈ 𝑥)
4844, 47sylibr 234 . . . . . . . . . . . 12 (𝑥 ∈ On → ( bday “ ( O ‘𝑥)) ⊆ 𝑥)
4941, 48eqsstrid 3988 . . . . . . . . . . 11 (𝑥 ∈ On → ( bday “ (( O ‘𝑥) ∪ ∅)) ⊆ 𝑥)
50 scutbdaybnd 27734 . . . . . . . . . . 11 ((( O ‘𝑥) <<s ∅ ∧ 𝑥 ∈ On ∧ ( bday “ (( O ‘𝑥) ∪ ∅)) ⊆ 𝑥) → ( bday ‘(( O ‘𝑥) |s ∅)) ⊆ 𝑥)
5138, 39, 49, 50mp3an2i 1468 . . . . . . . . . 10 (𝑥 ∈ On → ( bday ‘(( O ‘𝑥) |s ∅)) ⊆ 𝑥)
52 ssltsep 27709 . . . . . . . . . . . . . . . 16 (( O ‘𝑥) <<s {𝑤} → ∀𝑦 ∈ ( O ‘𝑥)∀𝑧 ∈ {𝑤}𝑦 <s 𝑧)
53 vex 3454 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ V
54 breq2 5114 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → (𝑦 <s 𝑧𝑦 <s 𝑤))
5553, 54ralsn 4648 . . . . . . . . . . . . . . . . 17 (∀𝑧 ∈ {𝑤}𝑦 <s 𝑧𝑦 <s 𝑤)
5655ralbii 3076 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ ( O ‘𝑥)∀𝑧 ∈ {𝑤}𝑦 <s 𝑧 ↔ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤)
5752, 56sylib 218 . . . . . . . . . . . . . . 15 (( O ‘𝑥) <<s {𝑤} → ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤)
58 sltirr 27665 . . . . . . . . . . . . . . . . . . 19 (𝑤 No → ¬ 𝑤 <s 𝑤)
59583ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → ¬ 𝑤 <s 𝑤)
60 oldbday 27819 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ On ∧ 𝑤 No ) → (𝑤 ∈ ( O ‘𝑥) ↔ ( bday 𝑤) ∈ 𝑥))
61603adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → (𝑤 ∈ ( O ‘𝑥) ↔ ( bday 𝑤) ∈ 𝑥))
62 breq1 5113 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑤 → (𝑦 <s 𝑤𝑤 <s 𝑤))
6362rspccv 3588 . . . . . . . . . . . . . . . . . . . 20 (∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤 → (𝑤 ∈ ( O ‘𝑥) → 𝑤 <s 𝑤))
64633ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → (𝑤 ∈ ( O ‘𝑥) → 𝑤 <s 𝑤))
6561, 64sylbird 260 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → (( bday 𝑤) ∈ 𝑥𝑤 <s 𝑤))
6659, 65mtod 198 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → ¬ ( bday 𝑤) ∈ 𝑥)
67 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → 𝑥 ∈ On)
68 bdayelon 27695 . . . . . . . . . . . . . . . . . 18 ( bday 𝑤) ∈ On
69 ontri1 6369 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ ( bday 𝑤) ∈ On) → (𝑥 ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ 𝑥))
7067, 68, 69sylancl 586 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → (𝑥 ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ 𝑥))
7166, 70mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑤 No ∧ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) → 𝑥 ⊆ ( bday 𝑤))
72713expia 1121 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑤 No ) → (∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤𝑥 ⊆ ( bday 𝑤)))
7357, 72syl5 34 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑤 No ) → (( O ‘𝑥) <<s {𝑤} → 𝑥 ⊆ ( bday 𝑤)))
7473adantrd 491 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑤 No ) → ((( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅) → 𝑥 ⊆ ( bday 𝑤)))
7574ralrimiva 3126 . . . . . . . . . . . 12 (𝑥 ∈ On → ∀𝑤 No ((( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅) → 𝑥 ⊆ ( bday 𝑤)))
76 ssint 4931 . . . . . . . . . . . . 13 (𝑥 ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}) ↔ ∀𝑧 ∈ ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)})𝑥𝑧)
77 bdayfn 27692 . . . . . . . . . . . . . 14 bday Fn No
78 ssrab2 4046 . . . . . . . . . . . . . 14 {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)} ⊆ No
79 sseq2 3976 . . . . . . . . . . . . . . 15 (𝑧 = ( bday 𝑤) → (𝑥𝑧𝑥 ⊆ ( bday 𝑤)))
8079ralima 7214 . . . . . . . . . . . . . 14 (( bday Fn No ∧ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)} ⊆ No ) → (∀𝑧 ∈ ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)})𝑥𝑧 ↔ ∀𝑤 ∈ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}𝑥 ⊆ ( bday 𝑤)))
8177, 78, 80mp2an 692 . . . . . . . . . . . . 13 (∀𝑧 ∈ ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)})𝑥𝑧 ↔ ∀𝑤 ∈ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}𝑥 ⊆ ( bday 𝑤))
82 sneq 4602 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑤 → {𝑦} = {𝑤})
8382breq2d 5122 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → (( O ‘𝑥) <<s {𝑦} ↔ ( O ‘𝑥) <<s {𝑤}))
8482breq1d 5120 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤 → ({𝑦} <<s ∅ ↔ {𝑤} <<s ∅))
8583, 84anbi12d 632 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → ((( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅) ↔ (( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅)))
8685ralrab 3668 . . . . . . . . . . . . 13 (∀𝑤 ∈ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}𝑥 ⊆ ( bday 𝑤) ↔ ∀𝑤 No ((( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅) → 𝑥 ⊆ ( bday 𝑤)))
8776, 81, 863bitri 297 . . . . . . . . . . . 12 (𝑥 ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}) ↔ ∀𝑤 No ((( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅) → 𝑥 ⊆ ( bday 𝑤)))
8875, 87sylibr 234 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥 ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}))
89 scutbday 27723 . . . . . . . . . . . 12 (( O ‘𝑥) <<s ∅ → ( bday ‘(( O ‘𝑥) |s ∅)) = ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}))
9038, 89ax-mp 5 . . . . . . . . . . 11 ( bday ‘(( O ‘𝑥) |s ∅)) = ( bday “ {𝑦 No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)})
9188, 90sseqtrrdi 3991 . . . . . . . . . 10 (𝑥 ∈ On → 𝑥 ⊆ ( bday ‘(( O ‘𝑥) |s ∅)))
9251, 91eqssd 3967 . . . . . . . . 9 (𝑥 ∈ On → ( bday ‘(( O ‘𝑥) |s ∅)) = 𝑥)
9334, 92eqtrd 2765 . . . . . . . 8 (𝑥 ∈ On → (( bday ↾ Ons)‘(( O ‘𝑥) |s ∅)) = 𝑥)
9427, 33, 93rspcedvdw 3594 . . . . . . 7 (𝑥 ∈ On → ∃𝑦 ∈ Ons (( bday ↾ Ons)‘𝑦) = 𝑥)
95 fvelrnb 6924 . . . . . . . 8 (( bday ↾ Ons) Fn Ons → (𝑥 ∈ ran ( bday ↾ Ons) ↔ ∃𝑦 ∈ Ons (( bday ↾ Ons)‘𝑦) = 𝑥))
9612, 95ax-mp 5 . . . . . . 7 (𝑥 ∈ ran ( bday ↾ Ons) ↔ ∃𝑦 ∈ Ons (( bday ↾ Ons)‘𝑦) = 𝑥)
9794, 96sylibr 234 . . . . . 6 (𝑥 ∈ On → 𝑥 ∈ ran ( bday ↾ Ons))
9897ssriv 3953 . . . . 5 On ⊆ ran ( bday ↾ Ons)
9915, 98eqssi 3966 . . . 4 ran ( bday ↾ Ons) = On
100 df-fo 6520 . . . 4 (( bday ↾ Ons):Onsonto→On ↔ (( bday ↾ Ons) Fn Ons ∧ ran ( bday ↾ Ons) = On))
10112, 99, 100mpbir2an 711 . . 3 ( bday ↾ Ons):Onsonto→On
102 df-f1o 6521 . . 3 (( bday ↾ Ons):Ons1-1-onto→On ↔ (( bday ↾ Ons):Ons1-1→On ∧ ( bday ↾ Ons):Onsonto→On))
10326, 101, 102mpbir2an 711 . 2 ( bday ↾ Ons):Ons1-1-onto→On
104 onslt 28175 . . . . 5 ((𝑥 ∈ Ons𝑦 ∈ Ons) → (𝑥 <s 𝑦 ↔ ( bday 𝑥) ∈ ( bday 𝑦)))
105 fvex 6874 . . . . . 6 ( bday 𝑦) ∈ V
106105epeli 5543 . . . . 5 (( bday 𝑥) E ( bday 𝑦) ↔ ( bday 𝑥) ∈ ( bday 𝑦))
107104, 106bitr4di 289 . . . 4 ((𝑥 ∈ Ons𝑦 ∈ Ons) → (𝑥 <s 𝑦 ↔ ( bday 𝑥) E ( bday 𝑦)))
10818, 19breqan12d 5126 . . . 4 ((𝑥 ∈ Ons𝑦 ∈ Ons) → ((( bday ↾ Ons)‘𝑥) E (( bday ↾ Ons)‘𝑦) ↔ ( bday 𝑥) E ( bday 𝑦)))
109107, 108bitr4d 282 . . 3 ((𝑥 ∈ Ons𝑦 ∈ Ons) → (𝑥 <s 𝑦 ↔ (( bday ↾ Ons)‘𝑥) E (( bday ↾ Ons)‘𝑦)))
110109rgen2 3178 . 2 𝑥 ∈ Ons𝑦 ∈ Ons (𝑥 <s 𝑦 ↔ (( bday ↾ Ons)‘𝑥) E (( bday ↾ Ons)‘𝑦))
111 df-isom 6523 . 2 (( bday ↾ Ons) Isom <s , E (Ons, On) ↔ (( bday ↾ Ons):Ons1-1-onto→On ∧ ∀𝑥 ∈ Ons𝑦 ∈ Ons (𝑥 <s 𝑦 ↔ (( bday ↾ Ons)‘𝑥) E (( bday ↾ Ons)‘𝑦))))
112103, 110, 111mpbir2an 711 1 ( bday ↾ Ons) Isom <s , E (Ons, On)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cint 4913   class class class wbr 5110   E cep 5540  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514   Isom wiso 6515  (class class class)co 7390   No csur 27558   <s cslt 27559   bday cbday 27560   <<s csslt 27699   |s cscut 27701   O cold 27758  Onscons 28159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-ons 28160
This theorem is referenced by:  onswe  28177  onsse  28178
  Copyright terms: Public domain W3C validator