| Step | Hyp | Ref
| Expression |
| 1 | | bdayfun 27736 |
. . . . . . 7
⊢ Fun bday |
| 2 | | funres 6578 |
. . . . . . 7
⊢ (Fun
bday → Fun ( bday
↾ Ons)) |
| 3 | 1, 2 | ax-mp 5 |
. . . . . 6
⊢ Fun
( bday ↾ Ons) |
| 4 | | dmres 5999 |
. . . . . . 7
⊢ dom
( bday ↾ Ons) = (Ons
∩ dom bday ) |
| 5 | | bdaydm 27738 |
. . . . . . . 8
⊢ dom bday = No
|
| 6 | 5 | ineq2i 4192 |
. . . . . . 7
⊢
(Ons ∩ dom bday ) =
(Ons ∩ No ) |
| 7 | | onssno 28207 |
. . . . . . . 8
⊢
Ons ⊆ No
|
| 8 | | dfss2 3944 |
. . . . . . . 8
⊢
(Ons ⊆ No ↔
(Ons ∩ No ) =
Ons) |
| 9 | 7, 8 | mpbi 230 |
. . . . . . 7
⊢
(Ons ∩ No ) =
Ons |
| 10 | 4, 6, 9 | 3eqtri 2762 |
. . . . . 6
⊢ dom
( bday ↾ Ons) =
Ons |
| 11 | | df-fn 6534 |
. . . . . 6
⊢ (( bday ↾ Ons) Fn Ons ↔
(Fun ( bday ↾ Ons) ∧ dom
( bday ↾ Ons) =
Ons)) |
| 12 | 3, 10, 11 | mpbir2an 711 |
. . . . 5
⊢ ( bday ↾ Ons) Fn
Ons |
| 13 | | rnresss 6004 |
. . . . . 6
⊢ ran
( bday ↾ Ons) ⊆ ran bday |
| 14 | | bdayrn 27739 |
. . . . . 6
⊢ ran bday = On |
| 15 | 13, 14 | sseqtri 4007 |
. . . . 5
⊢ ran
( bday ↾ Ons) ⊆
On |
| 16 | | df-f 6535 |
. . . . 5
⊢ (( bday ↾ Ons):Ons⟶On
↔ (( bday ↾ Ons) Fn
Ons ∧ ran ( bday ↾
Ons) ⊆ On)) |
| 17 | 12, 15, 16 | mpbir2an 711 |
. . . 4
⊢ ( bday ↾
Ons):Ons⟶On |
| 18 | | fvres 6895 |
. . . . . . 7
⊢ (𝑥 ∈ Ons →
(( bday ↾ Ons)‘𝑥) = ( bday
‘𝑥)) |
| 19 | | fvres 6895 |
. . . . . . 7
⊢ (𝑦 ∈ Ons →
(( bday ↾ Ons)‘𝑦) = ( bday
‘𝑦)) |
| 20 | 18, 19 | eqeqan12d 2749 |
. . . . . 6
⊢ ((𝑥 ∈ Ons ∧
𝑦 ∈ Ons)
→ ((( bday ↾
Ons)‘𝑥) =
(( bday ↾ Ons)‘𝑦) ↔ (
bday ‘𝑥) =
( bday ‘𝑦))) |
| 21 | | bday11on 28218 |
. . . . . . 7
⊢ ((𝑥 ∈ Ons ∧
𝑦 ∈ Ons
∧ ( bday ‘𝑥) = ( bday
‘𝑦)) →
𝑥 = 𝑦) |
| 22 | 21 | 3expia 1121 |
. . . . . 6
⊢ ((𝑥 ∈ Ons ∧
𝑦 ∈ Ons)
→ (( bday ‘𝑥) = ( bday
‘𝑦) →
𝑥 = 𝑦)) |
| 23 | 20, 22 | sylbid 240 |
. . . . 5
⊢ ((𝑥 ∈ Ons ∧
𝑦 ∈ Ons)
→ ((( bday ↾
Ons)‘𝑥) =
(( bday ↾ Ons)‘𝑦) → 𝑥 = 𝑦)) |
| 24 | 23 | rgen2 3184 |
. . . 4
⊢
∀𝑥 ∈
Ons ∀𝑦
∈ Ons ((( bday ↾
Ons)‘𝑥) =
(( bday ↾ Ons)‘𝑦) → 𝑥 = 𝑦) |
| 25 | | dff13 7247 |
. . . 4
⊢ (( bday ↾
Ons):Ons–1-1→On ↔ (( bday
↾ Ons):Ons⟶On ∧ ∀𝑥 ∈ Ons
∀𝑦 ∈
Ons ((( bday ↾
Ons)‘𝑥) =
(( bday ↾ Ons)‘𝑦) → 𝑥 = 𝑦))) |
| 26 | 17, 24, 25 | mpbir2an 711 |
. . 3
⊢ ( bday ↾
Ons):Ons–1-1→On |
| 27 | | fveqeq2 6885 |
. . . . . . . 8
⊢ (𝑦 = (( O ‘𝑥) |s ∅) → ((( bday ↾ Ons)‘𝑦) = 𝑥 ↔ (( bday
↾ Ons)‘(( O ‘𝑥) |s ∅)) = 𝑥)) |
| 28 | | fvex 6889 |
. . . . . . . . . 10
⊢ ( O
‘𝑥) ∈
V |
| 29 | 28 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → ( O
‘𝑥) ∈
V) |
| 30 | | oldssno 27821 |
. . . . . . . . . 10
⊢ ( O
‘𝑥) ⊆ No |
| 31 | 30 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → ( O
‘𝑥) ⊆ No ) |
| 32 | | eqidd 2736 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → (( O
‘𝑥) |s ∅) = ((
O ‘𝑥) |s
∅)) |
| 33 | 29, 31, 32 | elons2d 28212 |
. . . . . . . 8
⊢ (𝑥 ∈ On → (( O
‘𝑥) |s ∅)
∈ Ons) |
| 34 | 33 | fvresd 6896 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → (( bday ↾ Ons)‘(( O ‘𝑥) |s ∅)) = ( bday ‘(( O ‘𝑥) |s ∅))) |
| 35 | 28 | elpw 4579 |
. . . . . . . . . . . . 13
⊢ (( O
‘𝑥) ∈ 𝒫
No ↔ ( O ‘𝑥) ⊆ No
) |
| 36 | 30, 35 | mpbir 231 |
. . . . . . . . . . . 12
⊢ ( O
‘𝑥) ∈ 𝒫
No |
| 37 | | nulssgt 27762 |
. . . . . . . . . . . 12
⊢ (( O
‘𝑥) ∈ 𝒫
No → ( O ‘𝑥) <<s ∅) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ( O
‘𝑥) <<s
∅ |
| 39 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → 𝑥 ∈ On) |
| 40 | | un0 4369 |
. . . . . . . . . . . . 13
⊢ (( O
‘𝑥) ∪ ∅) =
( O ‘𝑥) |
| 41 | 40 | imaeq2i 6045 |
. . . . . . . . . . . 12
⊢ ( bday “ (( O ‘𝑥) ∪ ∅)) = (
bday “ ( O ‘𝑥)) |
| 42 | | oldbdayim 27852 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ( O ‘𝑥) → (
bday ‘𝑦)
∈ 𝑥) |
| 43 | 42 | rgen 3053 |
. . . . . . . . . . . . . 14
⊢
∀𝑦 ∈ ( O
‘𝑥)( bday ‘𝑦) ∈ 𝑥 |
| 44 | 43 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ On → ∀𝑦 ∈ ( O ‘𝑥)( bday
‘𝑦) ∈
𝑥) |
| 45 | 30, 5 | sseqtrri 4008 |
. . . . . . . . . . . . . 14
⊢ ( O
‘𝑥) ⊆ dom bday |
| 46 | | funimass4 6943 |
. . . . . . . . . . . . . 14
⊢ ((Fun
bday ∧ ( O ‘𝑥) ⊆ dom bday
) → (( bday “ ( O ‘𝑥)) ⊆ 𝑥 ↔ ∀𝑦 ∈ ( O ‘𝑥)( bday
‘𝑦) ∈
𝑥)) |
| 47 | 1, 45, 46 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ (( bday “ ( O ‘𝑥)) ⊆ 𝑥 ↔ ∀𝑦 ∈ ( O ‘𝑥)( bday
‘𝑦) ∈
𝑥) |
| 48 | 44, 47 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ On → ( bday “ ( O ‘𝑥)) ⊆ 𝑥) |
| 49 | 41, 48 | eqsstrid 3997 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → ( bday “ (( O ‘𝑥) ∪ ∅)) ⊆ 𝑥) |
| 50 | | scutbdaybnd 27779 |
. . . . . . . . . . 11
⊢ ((( O
‘𝑥) <<s ∅
∧ 𝑥 ∈ On ∧
( bday “ (( O ‘𝑥) ∪ ∅)) ⊆ 𝑥) → ( bday
‘(( O ‘𝑥) |s ∅)) ⊆ 𝑥) |
| 51 | 38, 39, 49, 50 | mp3an2i 1468 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → ( bday ‘(( O ‘𝑥) |s ∅)) ⊆ 𝑥) |
| 52 | | ssltsep 27754 |
. . . . . . . . . . . . . . . 16
⊢ (( O
‘𝑥) <<s {𝑤} → ∀𝑦 ∈ ( O ‘𝑥)∀𝑧 ∈ {𝑤}𝑦 <s 𝑧) |
| 53 | | vex 3463 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑤 ∈ V |
| 54 | | breq2 5123 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑤 → (𝑦 <s 𝑧 ↔ 𝑦 <s 𝑤)) |
| 55 | 53, 54 | ralsn 4657 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑧 ∈
{𝑤}𝑦 <s 𝑧 ↔ 𝑦 <s 𝑤) |
| 56 | 55 | ralbii 3082 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈ (
O ‘𝑥)∀𝑧 ∈ {𝑤}𝑦 <s 𝑧 ↔ ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) |
| 57 | 52, 56 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (( O
‘𝑥) <<s {𝑤} → ∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤) |
| 58 | | sltirr 27710 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈
No → ¬ 𝑤
<s 𝑤) |
| 59 | 58 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ On ∧ 𝑤 ∈
No ∧ ∀𝑦
∈ ( O ‘𝑥)𝑦 <s 𝑤) → ¬ 𝑤 <s 𝑤) |
| 60 | | oldbday 27864 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ On ∧ 𝑤 ∈
No ) → (𝑤
∈ ( O ‘𝑥) ↔
( bday ‘𝑤) ∈ 𝑥)) |
| 61 | 60 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ On ∧ 𝑤 ∈
No ∧ ∀𝑦
∈ ( O ‘𝑥)𝑦 <s 𝑤) → (𝑤 ∈ ( O ‘𝑥) ↔ ( bday
‘𝑤) ∈
𝑥)) |
| 62 | | breq1 5122 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑤 → (𝑦 <s 𝑤 ↔ 𝑤 <s 𝑤)) |
| 63 | 62 | rspccv 3598 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑦 ∈ (
O ‘𝑥)𝑦 <s 𝑤 → (𝑤 ∈ ( O ‘𝑥) → 𝑤 <s 𝑤)) |
| 64 | 63 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ On ∧ 𝑤 ∈
No ∧ ∀𝑦
∈ ( O ‘𝑥)𝑦 <s 𝑤) → (𝑤 ∈ ( O ‘𝑥) → 𝑤 <s 𝑤)) |
| 65 | 61, 64 | sylbird 260 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ On ∧ 𝑤 ∈
No ∧ ∀𝑦
∈ ( O ‘𝑥)𝑦 <s 𝑤) → (( bday
‘𝑤) ∈
𝑥 → 𝑤 <s 𝑤)) |
| 66 | 59, 65 | mtod 198 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ On ∧ 𝑤 ∈
No ∧ ∀𝑦
∈ ( O ‘𝑥)𝑦 <s 𝑤) → ¬ ( bday
‘𝑤) ∈
𝑥) |
| 67 | | simp1 1136 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ On ∧ 𝑤 ∈
No ∧ ∀𝑦
∈ ( O ‘𝑥)𝑦 <s 𝑤) → 𝑥 ∈ On) |
| 68 | | bdayelon 27740 |
. . . . . . . . . . . . . . . . . 18
⊢ ( bday ‘𝑤) ∈ On |
| 69 | | ontri1 6386 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ On ∧ ( bday ‘𝑤) ∈ On) → (𝑥 ⊆ ( bday
‘𝑤) ↔
¬ ( bday ‘𝑤) ∈ 𝑥)) |
| 70 | 67, 68, 69 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ On ∧ 𝑤 ∈
No ∧ ∀𝑦
∈ ( O ‘𝑥)𝑦 <s 𝑤) → (𝑥 ⊆ ( bday
‘𝑤) ↔
¬ ( bday ‘𝑤) ∈ 𝑥)) |
| 71 | 66, 70 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ On ∧ 𝑤 ∈
No ∧ ∀𝑦
∈ ( O ‘𝑥)𝑦 <s 𝑤) → 𝑥 ⊆ ( bday
‘𝑤)) |
| 72 | 71 | 3expia 1121 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ On ∧ 𝑤 ∈
No ) → (∀𝑦 ∈ ( O ‘𝑥)𝑦 <s 𝑤 → 𝑥 ⊆ ( bday
‘𝑤))) |
| 73 | 57, 72 | syl5 34 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ On ∧ 𝑤 ∈
No ) → (( O ‘𝑥) <<s {𝑤} → 𝑥 ⊆ ( bday
‘𝑤))) |
| 74 | 73 | adantrd 491 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ On ∧ 𝑤 ∈
No ) → ((( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅) → 𝑥 ⊆ (
bday ‘𝑤))) |
| 75 | 74 | ralrimiva 3132 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ On → ∀𝑤 ∈
No ((( O ‘𝑥)
<<s {𝑤} ∧ {𝑤} <<s ∅) →
𝑥 ⊆ ( bday ‘𝑤))) |
| 76 | | ssint 4940 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ ∩ ( bday “ {𝑦 ∈
No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}) ↔ ∀𝑧 ∈ (
bday “ {𝑦
∈ No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)})𝑥 ⊆ 𝑧) |
| 77 | | bdayfn 27737 |
. . . . . . . . . . . . . 14
⊢ bday Fn No
|
| 78 | | ssrab2 4055 |
. . . . . . . . . . . . . 14
⊢ {𝑦 ∈
No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)} ⊆ No |
| 79 | | sseq2 3985 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ( bday
‘𝑤) →
(𝑥 ⊆ 𝑧 ↔ 𝑥 ⊆ ( bday
‘𝑤))) |
| 80 | 79 | ralima 7229 |
. . . . . . . . . . . . . 14
⊢ (( bday Fn No ∧ {𝑦 ∈
No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)} ⊆ No ) → (∀𝑧 ∈ ( bday
“ {𝑦 ∈ No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)})𝑥 ⊆ 𝑧 ↔ ∀𝑤 ∈ {𝑦 ∈ No
∣ (( O ‘𝑥)
<<s {𝑦} ∧ {𝑦} <<s ∅)}𝑥 ⊆ (
bday ‘𝑤))) |
| 81 | 77, 78, 80 | mp2an 692 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
( bday “ {𝑦 ∈ No
∣ (( O ‘𝑥)
<<s {𝑦} ∧ {𝑦} <<s ∅)})𝑥 ⊆ 𝑧 ↔ ∀𝑤 ∈ {𝑦 ∈ No
∣ (( O ‘𝑥)
<<s {𝑦} ∧ {𝑦} <<s ∅)}𝑥 ⊆ (
bday ‘𝑤)) |
| 82 | | sneq 4611 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑤 → {𝑦} = {𝑤}) |
| 83 | 82 | breq2d 5131 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑤 → (( O ‘𝑥) <<s {𝑦} ↔ ( O ‘𝑥) <<s {𝑤})) |
| 84 | 82 | breq1d 5129 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑤 → ({𝑦} <<s ∅ ↔ {𝑤} <<s
∅)) |
| 85 | 83, 84 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → ((( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅) ↔ (( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅))) |
| 86 | 85 | ralrab 3677 |
. . . . . . . . . . . . 13
⊢
(∀𝑤 ∈
{𝑦 ∈ No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}𝑥 ⊆ ( bday
‘𝑤) ↔
∀𝑤 ∈ No ((( O ‘𝑥) <<s {𝑤} ∧ {𝑤} <<s ∅) → 𝑥 ⊆ (
bday ‘𝑤))) |
| 87 | 76, 81, 86 | 3bitri 297 |
. . . . . . . . . . . 12
⊢ (𝑥 ⊆ ∩ ( bday “ {𝑦 ∈
No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)}) ↔ ∀𝑤 ∈
No ((( O ‘𝑥)
<<s {𝑤} ∧ {𝑤} <<s ∅) →
𝑥 ⊆ ( bday ‘𝑤))) |
| 88 | 75, 87 | sylibr 234 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → 𝑥 ⊆ ∩ ( bday “ {𝑦 ∈
No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)})) |
| 89 | | scutbday 27768 |
. . . . . . . . . . . 12
⊢ (( O
‘𝑥) <<s ∅
→ ( bday ‘(( O ‘𝑥) |s ∅)) = ∩ ( bday “ {𝑦 ∈
No ∣ (( O ‘𝑥) <<s {𝑦} ∧ {𝑦} <<s ∅)})) |
| 90 | 38, 89 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ( bday ‘(( O ‘𝑥) |s ∅)) = ∩
( bday “ {𝑦 ∈ No
∣ (( O ‘𝑥)
<<s {𝑦} ∧ {𝑦} <<s
∅)}) |
| 91 | 88, 90 | sseqtrrdi 4000 |
. . . . . . . . . 10
⊢ (𝑥 ∈ On → 𝑥 ⊆ (
bday ‘(( O ‘𝑥) |s ∅))) |
| 92 | 51, 91 | eqssd 3976 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → ( bday ‘(( O ‘𝑥) |s ∅)) = 𝑥) |
| 93 | 34, 92 | eqtrd 2770 |
. . . . . . . 8
⊢ (𝑥 ∈ On → (( bday ↾ Ons)‘(( O ‘𝑥) |s ∅)) = 𝑥) |
| 94 | 27, 33, 93 | rspcedvdw 3604 |
. . . . . . 7
⊢ (𝑥 ∈ On → ∃𝑦 ∈ Ons (( bday ↾ Ons)‘𝑦) = 𝑥) |
| 95 | | fvelrnb 6939 |
. . . . . . . 8
⊢ (( bday ↾ Ons) Fn Ons →
(𝑥 ∈ ran ( bday ↾ Ons) ↔ ∃𝑦 ∈ Ons (( bday ↾ Ons)‘𝑦) = 𝑥)) |
| 96 | 12, 95 | ax-mp 5 |
. . . . . . 7
⊢ (𝑥 ∈ ran ( bday ↾ Ons) ↔ ∃𝑦 ∈ Ons (( bday ↾ Ons)‘𝑦) = 𝑥) |
| 97 | 94, 96 | sylibr 234 |
. . . . . 6
⊢ (𝑥 ∈ On → 𝑥 ∈ ran ( bday ↾ Ons)) |
| 98 | 97 | ssriv 3962 |
. . . . 5
⊢ On
⊆ ran ( bday ↾
Ons) |
| 99 | 15, 98 | eqssi 3975 |
. . . 4
⊢ ran
( bday ↾ Ons) =
On |
| 100 | | df-fo 6537 |
. . . 4
⊢ (( bday ↾
Ons):Ons–onto→On ↔ (( bday
↾ Ons) Fn Ons ∧ ran ( bday ↾ Ons) = On)) |
| 101 | 12, 99, 100 | mpbir2an 711 |
. . 3
⊢ ( bday ↾
Ons):Ons–onto→On |
| 102 | | df-f1o 6538 |
. . 3
⊢ (( bday ↾
Ons):Ons–1-1-onto→On
↔ (( bday ↾
Ons):Ons–1-1→On ∧ ( bday
↾ Ons):Ons–onto→On)) |
| 103 | 26, 101, 102 | mpbir2an 711 |
. 2
⊢ ( bday ↾
Ons):Ons–1-1-onto→On |
| 104 | | onslt 28220 |
. . . . 5
⊢ ((𝑥 ∈ Ons ∧
𝑦 ∈ Ons)
→ (𝑥 <s 𝑦 ↔ (
bday ‘𝑥)
∈ ( bday ‘𝑦))) |
| 105 | | fvex 6889 |
. . . . . 6
⊢ ( bday ‘𝑦) ∈ V |
| 106 | 105 | epeli 5555 |
. . . . 5
⊢ (( bday ‘𝑥) E ( bday
‘𝑦) ↔
( bday ‘𝑥) ∈ ( bday
‘𝑦)) |
| 107 | 104, 106 | bitr4di 289 |
. . . 4
⊢ ((𝑥 ∈ Ons ∧
𝑦 ∈ Ons)
→ (𝑥 <s 𝑦 ↔ (
bday ‘𝑥) E
( bday ‘𝑦))) |
| 108 | 18, 19 | breqan12d 5135 |
. . . 4
⊢ ((𝑥 ∈ Ons ∧
𝑦 ∈ Ons)
→ ((( bday ↾
Ons)‘𝑥) E
(( bday ↾ Ons)‘𝑦) ↔ (
bday ‘𝑥) E
( bday ‘𝑦))) |
| 109 | 107, 108 | bitr4d 282 |
. . 3
⊢ ((𝑥 ∈ Ons ∧
𝑦 ∈ Ons)
→ (𝑥 <s 𝑦 ↔ ((
bday ↾ Ons)‘𝑥) E (( bday
↾ Ons)‘𝑦))) |
| 110 | 109 | rgen2 3184 |
. 2
⊢
∀𝑥 ∈
Ons ∀𝑦
∈ Ons (𝑥
<s 𝑦 ↔ (( bday ↾ Ons)‘𝑥) E (( bday
↾ Ons)‘𝑦)) |
| 111 | | df-isom 6540 |
. 2
⊢ (( bday ↾ Ons) Isom <s , E
(Ons, On) ↔ (( bday ↾
Ons):Ons–1-1-onto→On
∧ ∀𝑥 ∈
Ons ∀𝑦
∈ Ons (𝑥
<s 𝑦 ↔ (( bday ↾ Ons)‘𝑥) E (( bday
↾ Ons)‘𝑦)))) |
| 112 | 103, 110,
111 | mpbir2an 711 |
1
⊢ ( bday ↾ Ons) Isom <s , E
(Ons, On) |