MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayn0sf1o Structured version   Visualization version   GIF version

Theorem bdayn0sf1o 28311
Description: The birthday function restricted to the non-negative surreal integers is a bijection with the finite ordinals. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayn0sf1o ( bday ↾ ℕ0s):ℕ0s1-1-onto→ω

Proof of Theorem bdayn0sf1o
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdayfun 27736 . . . . . . 7 Fun bday
2 funres 6578 . . . . . . 7 (Fun bday → Fun ( bday ↾ ℕ0s))
31, 2ax-mp 5 . . . . . 6 Fun ( bday ↾ ℕ0s)
4 dmres 5999 . . . . . . 7 dom ( bday ↾ ℕ0s) = (ℕ0s ∩ dom bday )
5 bdaydm 27738 . . . . . . . 8 dom bday = No
65ineq2i 4192 . . . . . . 7 (ℕ0s ∩ dom bday ) = (ℕ0s No )
7 n0ssno 28265 . . . . . . . 8 0s No
8 dfss2 3944 . . . . . . . 8 (ℕ0s No ↔ (ℕ0s No ) = ℕ0s)
97, 8mpbi 230 . . . . . . 7 (ℕ0s No ) = ℕ0s
104, 6, 93eqtri 2762 . . . . . 6 dom ( bday ↾ ℕ0s) = ℕ0s
11 df-fn 6534 . . . . . 6 (( bday ↾ ℕ0s) Fn ℕ0s ↔ (Fun ( bday ↾ ℕ0s) ∧ dom ( bday ↾ ℕ0s) = ℕ0s))
123, 10, 11mpbir2an 711 . . . . 5 ( bday ↾ ℕ0s) Fn ℕ0s
13 fvres 6895 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (( bday ↾ ℕ0s)‘𝑥) = ( bday 𝑥))
14 n0sbday 28296 . . . . . . . . 9 (𝑥 ∈ ℕ0s → ( bday 𝑥) ∈ ω)
1513, 14eqeltrd 2834 . . . . . . . 8 (𝑥 ∈ ℕ0s → (( bday ↾ ℕ0s)‘𝑥) ∈ ω)
1615rgen 3053 . . . . . . 7 𝑥 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑥) ∈ ω
17 fnfvrnss 7111 . . . . . . 7 ((( bday ↾ ℕ0s) Fn ℕ0s ∧ ∀𝑥 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑥) ∈ ω) → ran ( bday ↾ ℕ0s) ⊆ ω)
1812, 16, 17mp2an 692 . . . . . 6 ran ( bday ↾ ℕ0s) ⊆ ω
19 eqeq2 2747 . . . . . . . . . 10 (𝑏 = ∅ → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = ∅))
2019rexbidv 3164 . . . . . . . . 9 (𝑏 = ∅ → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = ∅))
21 eqeq2 2747 . . . . . . . . . 10 (𝑏 = 𝑎 → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = 𝑎))
2221rexbidv 3164 . . . . . . . . 9 (𝑏 = 𝑎 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑎))
23 eqeq2 2747 . . . . . . . . . . 11 (𝑏 = suc 𝑎 → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = suc 𝑎))
2423rexbidv 3164 . . . . . . . . . 10 (𝑏 = suc 𝑎 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = suc 𝑎))
25 fveqeq2 6885 . . . . . . . . . . 11 (𝑦 = 𝑧 → (( bday 𝑦) = suc 𝑎 ↔ ( bday 𝑧) = suc 𝑎))
2625cbvrexvw 3221 . . . . . . . . . 10 (∃𝑦 ∈ ℕ0s ( bday 𝑦) = suc 𝑎 ↔ ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎)
2724, 26bitrdi 287 . . . . . . . . 9 (𝑏 = suc 𝑎 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
28 eqeq2 2747 . . . . . . . . . 10 (𝑏 = 𝑥 → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = 𝑥))
2928rexbidv 3164 . . . . . . . . 9 (𝑏 = 𝑥 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥))
30 0n0s 28274 . . . . . . . . . 10 0s ∈ ℕ0s
31 bday0s 27792 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
32 fveqeq2 6885 . . . . . . . . . . 11 (𝑦 = 0s → (( bday 𝑦) = ∅ ↔ ( bday ‘ 0s ) = ∅))
3332rspcev 3601 . . . . . . . . . 10 (( 0s ∈ ℕ0s ∧ ( bday ‘ 0s ) = ∅) → ∃𝑦 ∈ ℕ0s ( bday 𝑦) = ∅)
3430, 31, 33mp2an 692 . . . . . . . . 9 𝑦 ∈ ℕ0s ( bday 𝑦) = ∅
35 fveqeq2 6885 . . . . . . . . . . . . 13 (𝑧 = (𝑦 +s 1s ) → (( bday 𝑧) = suc ( bday 𝑦) ↔ ( bday ‘(𝑦 +s 1s )) = suc ( bday 𝑦)))
36 peano2n0s 28275 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
37 bdayn0p1 28310 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0s → ( bday ‘(𝑦 +s 1s )) = suc ( bday 𝑦))
3835, 36, 37rspcedvdw 3604 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0s → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc ( bday 𝑦))
3938adantl 481 . . . . . . . . . . 11 ((𝑎 ∈ ω ∧ 𝑦 ∈ ℕ0s) → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc ( bday 𝑦))
40 suceq 6419 . . . . . . . . . . . . 13 (( bday 𝑦) = 𝑎 → suc ( bday 𝑦) = suc 𝑎)
4140eqeq2d 2746 . . . . . . . . . . . 12 (( bday 𝑦) = 𝑎 → (( bday 𝑧) = suc ( bday 𝑦) ↔ ( bday 𝑧) = suc 𝑎))
4241rexbidv 3164 . . . . . . . . . . 11 (( bday 𝑦) = 𝑎 → (∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc ( bday 𝑦) ↔ ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
4339, 42syl5ibcom 245 . . . . . . . . . 10 ((𝑎 ∈ ω ∧ 𝑦 ∈ ℕ0s) → (( bday 𝑦) = 𝑎 → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
4443rexlimdva 3141 . . . . . . . . 9 (𝑎 ∈ ω → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑎 → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
4520, 22, 27, 29, 34, 44finds 7892 . . . . . . . 8 (𝑥 ∈ ω → ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥)
46 fvelrnb 6939 . . . . . . . . . 10 (( bday ↾ ℕ0s) Fn ℕ0s → (𝑥 ∈ ran ( bday ↾ ℕ0s) ↔ ∃𝑦 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑦) = 𝑥))
4712, 46ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran ( bday ↾ ℕ0s) ↔ ∃𝑦 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑦) = 𝑥)
48 fvres 6895 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → (( bday ↾ ℕ0s)‘𝑦) = ( bday 𝑦))
4948eqeq1d 2737 . . . . . . . . . 10 (𝑦 ∈ ℕ0s → ((( bday ↾ ℕ0s)‘𝑦) = 𝑥 ↔ ( bday 𝑦) = 𝑥))
5049rexbiia 3081 . . . . . . . . 9 (∃𝑦 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥)
5147, 50bitri 275 . . . . . . . 8 (𝑥 ∈ ran ( bday ↾ ℕ0s) ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥)
5245, 51sylibr 234 . . . . . . 7 (𝑥 ∈ ω → 𝑥 ∈ ran ( bday ↾ ℕ0s))
5352ssriv 3962 . . . . . 6 ω ⊆ ran ( bday ↾ ℕ0s)
5418, 53eqssi 3975 . . . . 5 ran ( bday ↾ ℕ0s) = ω
55 df-fo 6537 . . . . 5 (( bday ↾ ℕ0s):ℕ0sonto→ω ↔ (( bday ↾ ℕ0s) Fn ℕ0s ∧ ran ( bday ↾ ℕ0s) = ω))
5612, 54, 55mpbir2an 711 . . . 4 ( bday ↾ ℕ0s):ℕ0sonto→ω
57 fof 6790 . . . 4 (( bday ↾ ℕ0s):ℕ0sonto→ω → ( bday ↾ ℕ0s):ℕ0s⟶ω)
5856, 57ax-mp 5 . . 3 ( bday ↾ ℕ0s):ℕ0s⟶ω
5913, 48eqeqan12d 2749 . . . . 5 ((𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s) → ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) ↔ ( bday 𝑥) = ( bday 𝑦)))
60 n0ons 28280 . . . . . 6 (𝑥 ∈ ℕ0s𝑥 ∈ Ons)
61 n0ons 28280 . . . . . 6 (𝑦 ∈ ℕ0s𝑦 ∈ Ons)
62 bday11on 28218 . . . . . . 7 ((𝑥 ∈ Ons𝑦 ∈ Ons ∧ ( bday 𝑥) = ( bday 𝑦)) → 𝑥 = 𝑦)
63623expia 1121 . . . . . 6 ((𝑥 ∈ Ons𝑦 ∈ Ons) → (( bday 𝑥) = ( bday 𝑦) → 𝑥 = 𝑦))
6460, 61, 63syl2an 596 . . . . 5 ((𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s) → (( bday 𝑥) = ( bday 𝑦) → 𝑥 = 𝑦))
6559, 64sylbid 240 . . . 4 ((𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s) → ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) → 𝑥 = 𝑦))
6665rgen2 3184 . . 3 𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) → 𝑥 = 𝑦)
67 dff13 7247 . . 3 (( bday ↾ ℕ0s):ℕ0s1-1→ω ↔ (( bday ↾ ℕ0s):ℕ0s⟶ω ∧ ∀𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) → 𝑥 = 𝑦)))
6858, 66, 67mpbir2an 711 . 2 ( bday ↾ ℕ0s):ℕ0s1-1→ω
69 df-f1o 6538 . 2 (( bday ↾ ℕ0s):ℕ0s1-1-onto→ω ↔ (( bday ↾ ℕ0s):ℕ0s1-1→ω ∧ ( bday ↾ ℕ0s):ℕ0sonto→ω))
7068, 56, 69mpbir2an 711 1 ( bday ↾ ℕ0s):ℕ0s1-1-onto→ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cin 3925  wss 3926  c0 4308  dom cdm 5654  ran crn 5655  cres 5656  suc csuc 6354  Fun wfun 6525   Fn wfn 6526  wf 6527  1-1wf1 6528  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  ωcom 7861   No csur 27603   bday cbday 27605   0s c0s 27786   1s c1s 27787   +s cadds 27918  Onscons 28204  0scnn0s 28258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-ons 28205  df-n0s 28260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator