MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayn0sf1o Structured version   Visualization version   GIF version

Theorem bdayn0sf1o 28295
Description: The birthday function restricted to the non-negative surreal integers is a bijection with the finite ordinals. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayn0sf1o ( bday ↾ ℕ0s):ℕ0s1-1-onto→ω

Proof of Theorem bdayn0sf1o
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdayfun 27711 . . . . . . 7 Fun bday
2 funres 6523 . . . . . . 7 (Fun bday → Fun ( bday ↾ ℕ0s))
31, 2ax-mp 5 . . . . . 6 Fun ( bday ↾ ℕ0s)
4 dmres 5960 . . . . . . 7 dom ( bday ↾ ℕ0s) = (ℕ0s ∩ dom bday )
5 bdaydm 27713 . . . . . . . 8 dom bday = No
65ineq2i 4164 . . . . . . 7 (ℕ0s ∩ dom bday ) = (ℕ0s No )
7 n0ssno 28249 . . . . . . . 8 0s No
8 dfss2 3915 . . . . . . . 8 (ℕ0s No ↔ (ℕ0s No ) = ℕ0s)
97, 8mpbi 230 . . . . . . 7 (ℕ0s No ) = ℕ0s
104, 6, 93eqtri 2758 . . . . . 6 dom ( bday ↾ ℕ0s) = ℕ0s
11 df-fn 6484 . . . . . 6 (( bday ↾ ℕ0s) Fn ℕ0s ↔ (Fun ( bday ↾ ℕ0s) ∧ dom ( bday ↾ ℕ0s) = ℕ0s))
123, 10, 11mpbir2an 711 . . . . 5 ( bday ↾ ℕ0s) Fn ℕ0s
13 fvres 6841 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (( bday ↾ ℕ0s)‘𝑥) = ( bday 𝑥))
14 n0sbday 28280 . . . . . . . . 9 (𝑥 ∈ ℕ0s → ( bday 𝑥) ∈ ω)
1513, 14eqeltrd 2831 . . . . . . . 8 (𝑥 ∈ ℕ0s → (( bday ↾ ℕ0s)‘𝑥) ∈ ω)
1615rgen 3049 . . . . . . 7 𝑥 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑥) ∈ ω
17 fnfvrnss 7054 . . . . . . 7 ((( bday ↾ ℕ0s) Fn ℕ0s ∧ ∀𝑥 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑥) ∈ ω) → ran ( bday ↾ ℕ0s) ⊆ ω)
1812, 16, 17mp2an 692 . . . . . 6 ran ( bday ↾ ℕ0s) ⊆ ω
19 eqeq2 2743 . . . . . . . . . 10 (𝑏 = ∅ → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = ∅))
2019rexbidv 3156 . . . . . . . . 9 (𝑏 = ∅ → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = ∅))
21 eqeq2 2743 . . . . . . . . . 10 (𝑏 = 𝑎 → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = 𝑎))
2221rexbidv 3156 . . . . . . . . 9 (𝑏 = 𝑎 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑎))
23 eqeq2 2743 . . . . . . . . . . 11 (𝑏 = suc 𝑎 → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = suc 𝑎))
2423rexbidv 3156 . . . . . . . . . 10 (𝑏 = suc 𝑎 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = suc 𝑎))
25 fveqeq2 6831 . . . . . . . . . . 11 (𝑦 = 𝑧 → (( bday 𝑦) = suc 𝑎 ↔ ( bday 𝑧) = suc 𝑎))
2625cbvrexvw 3211 . . . . . . . . . 10 (∃𝑦 ∈ ℕ0s ( bday 𝑦) = suc 𝑎 ↔ ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎)
2724, 26bitrdi 287 . . . . . . . . 9 (𝑏 = suc 𝑎 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
28 eqeq2 2743 . . . . . . . . . 10 (𝑏 = 𝑥 → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = 𝑥))
2928rexbidv 3156 . . . . . . . . 9 (𝑏 = 𝑥 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥))
30 0n0s 28258 . . . . . . . . . 10 0s ∈ ℕ0s
31 bday0s 27772 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
32 fveqeq2 6831 . . . . . . . . . . 11 (𝑦 = 0s → (( bday 𝑦) = ∅ ↔ ( bday ‘ 0s ) = ∅))
3332rspcev 3572 . . . . . . . . . 10 (( 0s ∈ ℕ0s ∧ ( bday ‘ 0s ) = ∅) → ∃𝑦 ∈ ℕ0s ( bday 𝑦) = ∅)
3430, 31, 33mp2an 692 . . . . . . . . 9 𝑦 ∈ ℕ0s ( bday 𝑦) = ∅
35 fveqeq2 6831 . . . . . . . . . . . . 13 (𝑧 = (𝑦 +s 1s ) → (( bday 𝑧) = suc ( bday 𝑦) ↔ ( bday ‘(𝑦 +s 1s )) = suc ( bday 𝑦)))
36 peano2n0s 28259 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
37 bdayn0p1 28294 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0s → ( bday ‘(𝑦 +s 1s )) = suc ( bday 𝑦))
3835, 36, 37rspcedvdw 3575 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0s → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc ( bday 𝑦))
3938adantl 481 . . . . . . . . . . 11 ((𝑎 ∈ ω ∧ 𝑦 ∈ ℕ0s) → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc ( bday 𝑦))
40 suceq 6374 . . . . . . . . . . . . 13 (( bday 𝑦) = 𝑎 → suc ( bday 𝑦) = suc 𝑎)
4140eqeq2d 2742 . . . . . . . . . . . 12 (( bday 𝑦) = 𝑎 → (( bday 𝑧) = suc ( bday 𝑦) ↔ ( bday 𝑧) = suc 𝑎))
4241rexbidv 3156 . . . . . . . . . . 11 (( bday 𝑦) = 𝑎 → (∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc ( bday 𝑦) ↔ ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
4339, 42syl5ibcom 245 . . . . . . . . . 10 ((𝑎 ∈ ω ∧ 𝑦 ∈ ℕ0s) → (( bday 𝑦) = 𝑎 → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
4443rexlimdva 3133 . . . . . . . . 9 (𝑎 ∈ ω → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑎 → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
4520, 22, 27, 29, 34, 44finds 7826 . . . . . . . 8 (𝑥 ∈ ω → ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥)
46 fvelrnb 6882 . . . . . . . . . 10 (( bday ↾ ℕ0s) Fn ℕ0s → (𝑥 ∈ ran ( bday ↾ ℕ0s) ↔ ∃𝑦 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑦) = 𝑥))
4712, 46ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran ( bday ↾ ℕ0s) ↔ ∃𝑦 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑦) = 𝑥)
48 fvres 6841 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → (( bday ↾ ℕ0s)‘𝑦) = ( bday 𝑦))
4948eqeq1d 2733 . . . . . . . . . 10 (𝑦 ∈ ℕ0s → ((( bday ↾ ℕ0s)‘𝑦) = 𝑥 ↔ ( bday 𝑦) = 𝑥))
5049rexbiia 3077 . . . . . . . . 9 (∃𝑦 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥)
5147, 50bitri 275 . . . . . . . 8 (𝑥 ∈ ran ( bday ↾ ℕ0s) ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥)
5245, 51sylibr 234 . . . . . . 7 (𝑥 ∈ ω → 𝑥 ∈ ran ( bday ↾ ℕ0s))
5352ssriv 3933 . . . . . 6 ω ⊆ ran ( bday ↾ ℕ0s)
5418, 53eqssi 3946 . . . . 5 ran ( bday ↾ ℕ0s) = ω
55 df-fo 6487 . . . . 5 (( bday ↾ ℕ0s):ℕ0sonto→ω ↔ (( bday ↾ ℕ0s) Fn ℕ0s ∧ ran ( bday ↾ ℕ0s) = ω))
5612, 54, 55mpbir2an 711 . . . 4 ( bday ↾ ℕ0s):ℕ0sonto→ω
57 fof 6735 . . . 4 (( bday ↾ ℕ0s):ℕ0sonto→ω → ( bday ↾ ℕ0s):ℕ0s⟶ω)
5856, 57ax-mp 5 . . 3 ( bday ↾ ℕ0s):ℕ0s⟶ω
5913, 48eqeqan12d 2745 . . . . 5 ((𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s) → ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) ↔ ( bday 𝑥) = ( bday 𝑦)))
60 n0ons 28264 . . . . . 6 (𝑥 ∈ ℕ0s𝑥 ∈ Ons)
61 n0ons 28264 . . . . . 6 (𝑦 ∈ ℕ0s𝑦 ∈ Ons)
62 bday11on 28202 . . . . . . 7 ((𝑥 ∈ Ons𝑦 ∈ Ons ∧ ( bday 𝑥) = ( bday 𝑦)) → 𝑥 = 𝑦)
63623expia 1121 . . . . . 6 ((𝑥 ∈ Ons𝑦 ∈ Ons) → (( bday 𝑥) = ( bday 𝑦) → 𝑥 = 𝑦))
6460, 61, 63syl2an 596 . . . . 5 ((𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s) → (( bday 𝑥) = ( bday 𝑦) → 𝑥 = 𝑦))
6559, 64sylbid 240 . . . 4 ((𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s) → ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) → 𝑥 = 𝑦))
6665rgen2 3172 . . 3 𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) → 𝑥 = 𝑦)
67 dff13 7188 . . 3 (( bday ↾ ℕ0s):ℕ0s1-1→ω ↔ (( bday ↾ ℕ0s):ℕ0s⟶ω ∧ ∀𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) → 𝑥 = 𝑦)))
6858, 66, 67mpbir2an 711 . 2 ( bday ↾ ℕ0s):ℕ0s1-1→ω
69 df-f1o 6488 . 2 (( bday ↾ ℕ0s):ℕ0s1-1-onto→ω ↔ (( bday ↾ ℕ0s):ℕ0s1-1→ω ∧ ( bday ↾ ℕ0s):ℕ0sonto→ω))
7068, 56, 69mpbir2an 711 1 ( bday ↾ ℕ0s):ℕ0s1-1-onto→ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cin 3896  wss 3897  c0 4280  dom cdm 5614  ran crn 5615  cres 5616  suc csuc 6308  Fun wfun 6475   Fn wfn 6476  wf 6477  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  ωcom 7796   No csur 27578   bday cbday 27580   0s c0s 27766   1s c1s 27767   +s cadds 27902  Onscons 28188  0scnn0s 28242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-ons 28189  df-n0s 28244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator