MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayn0sf1o Structured version   Visualization version   GIF version

Theorem bdayn0sf1o 28299
Description: The birthday function restricted to the non-negative surreal integers is a bijection with the finite ordinals. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayn0sf1o ( bday ↾ ℕ0s):ℕ0s1-1-onto→ω

Proof of Theorem bdayn0sf1o
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdayfun 27717 . . . . . . 7 Fun bday
2 funres 6542 . . . . . . 7 (Fun bday → Fun ( bday ↾ ℕ0s))
31, 2ax-mp 5 . . . . . 6 Fun ( bday ↾ ℕ0s)
4 dmres 5972 . . . . . . 7 dom ( bday ↾ ℕ0s) = (ℕ0s ∩ dom bday )
5 bdaydm 27719 . . . . . . . 8 dom bday = No
65ineq2i 4176 . . . . . . 7 (ℕ0s ∩ dom bday ) = (ℕ0s No )
7 n0ssno 28253 . . . . . . . 8 0s No
8 dfss2 3929 . . . . . . . 8 (ℕ0s No ↔ (ℕ0s No ) = ℕ0s)
97, 8mpbi 230 . . . . . . 7 (ℕ0s No ) = ℕ0s
104, 6, 93eqtri 2756 . . . . . 6 dom ( bday ↾ ℕ0s) = ℕ0s
11 df-fn 6502 . . . . . 6 (( bday ↾ ℕ0s) Fn ℕ0s ↔ (Fun ( bday ↾ ℕ0s) ∧ dom ( bday ↾ ℕ0s) = ℕ0s))
123, 10, 11mpbir2an 711 . . . . 5 ( bday ↾ ℕ0s) Fn ℕ0s
13 fvres 6859 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (( bday ↾ ℕ0s)‘𝑥) = ( bday 𝑥))
14 n0sbday 28284 . . . . . . . . 9 (𝑥 ∈ ℕ0s → ( bday 𝑥) ∈ ω)
1513, 14eqeltrd 2828 . . . . . . . 8 (𝑥 ∈ ℕ0s → (( bday ↾ ℕ0s)‘𝑥) ∈ ω)
1615rgen 3046 . . . . . . 7 𝑥 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑥) ∈ ω
17 fnfvrnss 7075 . . . . . . 7 ((( bday ↾ ℕ0s) Fn ℕ0s ∧ ∀𝑥 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑥) ∈ ω) → ran ( bday ↾ ℕ0s) ⊆ ω)
1812, 16, 17mp2an 692 . . . . . 6 ran ( bday ↾ ℕ0s) ⊆ ω
19 eqeq2 2741 . . . . . . . . . 10 (𝑏 = ∅ → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = ∅))
2019rexbidv 3157 . . . . . . . . 9 (𝑏 = ∅ → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = ∅))
21 eqeq2 2741 . . . . . . . . . 10 (𝑏 = 𝑎 → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = 𝑎))
2221rexbidv 3157 . . . . . . . . 9 (𝑏 = 𝑎 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑎))
23 eqeq2 2741 . . . . . . . . . . 11 (𝑏 = suc 𝑎 → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = suc 𝑎))
2423rexbidv 3157 . . . . . . . . . 10 (𝑏 = suc 𝑎 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = suc 𝑎))
25 fveqeq2 6849 . . . . . . . . . . 11 (𝑦 = 𝑧 → (( bday 𝑦) = suc 𝑎 ↔ ( bday 𝑧) = suc 𝑎))
2625cbvrexvw 3214 . . . . . . . . . 10 (∃𝑦 ∈ ℕ0s ( bday 𝑦) = suc 𝑎 ↔ ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎)
2724, 26bitrdi 287 . . . . . . . . 9 (𝑏 = suc 𝑎 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
28 eqeq2 2741 . . . . . . . . . 10 (𝑏 = 𝑥 → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = 𝑥))
2928rexbidv 3157 . . . . . . . . 9 (𝑏 = 𝑥 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥))
30 0n0s 28262 . . . . . . . . . 10 0s ∈ ℕ0s
31 bday0s 27777 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
32 fveqeq2 6849 . . . . . . . . . . 11 (𝑦 = 0s → (( bday 𝑦) = ∅ ↔ ( bday ‘ 0s ) = ∅))
3332rspcev 3585 . . . . . . . . . 10 (( 0s ∈ ℕ0s ∧ ( bday ‘ 0s ) = ∅) → ∃𝑦 ∈ ℕ0s ( bday 𝑦) = ∅)
3430, 31, 33mp2an 692 . . . . . . . . 9 𝑦 ∈ ℕ0s ( bday 𝑦) = ∅
35 fveqeq2 6849 . . . . . . . . . . . . 13 (𝑧 = (𝑦 +s 1s ) → (( bday 𝑧) = suc ( bday 𝑦) ↔ ( bday ‘(𝑦 +s 1s )) = suc ( bday 𝑦)))
36 peano2n0s 28263 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
37 bdayn0p1 28298 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0s → ( bday ‘(𝑦 +s 1s )) = suc ( bday 𝑦))
3835, 36, 37rspcedvdw 3588 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0s → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc ( bday 𝑦))
3938adantl 481 . . . . . . . . . . 11 ((𝑎 ∈ ω ∧ 𝑦 ∈ ℕ0s) → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc ( bday 𝑦))
40 suceq 6388 . . . . . . . . . . . . 13 (( bday 𝑦) = 𝑎 → suc ( bday 𝑦) = suc 𝑎)
4140eqeq2d 2740 . . . . . . . . . . . 12 (( bday 𝑦) = 𝑎 → (( bday 𝑧) = suc ( bday 𝑦) ↔ ( bday 𝑧) = suc 𝑎))
4241rexbidv 3157 . . . . . . . . . . 11 (( bday 𝑦) = 𝑎 → (∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc ( bday 𝑦) ↔ ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
4339, 42syl5ibcom 245 . . . . . . . . . 10 ((𝑎 ∈ ω ∧ 𝑦 ∈ ℕ0s) → (( bday 𝑦) = 𝑎 → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
4443rexlimdva 3134 . . . . . . . . 9 (𝑎 ∈ ω → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑎 → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
4520, 22, 27, 29, 34, 44finds 7852 . . . . . . . 8 (𝑥 ∈ ω → ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥)
46 fvelrnb 6903 . . . . . . . . . 10 (( bday ↾ ℕ0s) Fn ℕ0s → (𝑥 ∈ ran ( bday ↾ ℕ0s) ↔ ∃𝑦 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑦) = 𝑥))
4712, 46ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran ( bday ↾ ℕ0s) ↔ ∃𝑦 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑦) = 𝑥)
48 fvres 6859 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → (( bday ↾ ℕ0s)‘𝑦) = ( bday 𝑦))
4948eqeq1d 2731 . . . . . . . . . 10 (𝑦 ∈ ℕ0s → ((( bday ↾ ℕ0s)‘𝑦) = 𝑥 ↔ ( bday 𝑦) = 𝑥))
5049rexbiia 3074 . . . . . . . . 9 (∃𝑦 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥)
5147, 50bitri 275 . . . . . . . 8 (𝑥 ∈ ran ( bday ↾ ℕ0s) ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥)
5245, 51sylibr 234 . . . . . . 7 (𝑥 ∈ ω → 𝑥 ∈ ran ( bday ↾ ℕ0s))
5352ssriv 3947 . . . . . 6 ω ⊆ ran ( bday ↾ ℕ0s)
5418, 53eqssi 3960 . . . . 5 ran ( bday ↾ ℕ0s) = ω
55 df-fo 6505 . . . . 5 (( bday ↾ ℕ0s):ℕ0sonto→ω ↔ (( bday ↾ ℕ0s) Fn ℕ0s ∧ ran ( bday ↾ ℕ0s) = ω))
5612, 54, 55mpbir2an 711 . . . 4 ( bday ↾ ℕ0s):ℕ0sonto→ω
57 fof 6754 . . . 4 (( bday ↾ ℕ0s):ℕ0sonto→ω → ( bday ↾ ℕ0s):ℕ0s⟶ω)
5856, 57ax-mp 5 . . 3 ( bday ↾ ℕ0s):ℕ0s⟶ω
5913, 48eqeqan12d 2743 . . . . 5 ((𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s) → ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) ↔ ( bday 𝑥) = ( bday 𝑦)))
60 n0ons 28268 . . . . . 6 (𝑥 ∈ ℕ0s𝑥 ∈ Ons)
61 n0ons 28268 . . . . . 6 (𝑦 ∈ ℕ0s𝑦 ∈ Ons)
62 bday11on 28206 . . . . . . 7 ((𝑥 ∈ Ons𝑦 ∈ Ons ∧ ( bday 𝑥) = ( bday 𝑦)) → 𝑥 = 𝑦)
63623expia 1121 . . . . . 6 ((𝑥 ∈ Ons𝑦 ∈ Ons) → (( bday 𝑥) = ( bday 𝑦) → 𝑥 = 𝑦))
6460, 61, 63syl2an 596 . . . . 5 ((𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s) → (( bday 𝑥) = ( bday 𝑦) → 𝑥 = 𝑦))
6559, 64sylbid 240 . . . 4 ((𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s) → ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) → 𝑥 = 𝑦))
6665rgen2 3175 . . 3 𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) → 𝑥 = 𝑦)
67 dff13 7211 . . 3 (( bday ↾ ℕ0s):ℕ0s1-1→ω ↔ (( bday ↾ ℕ0s):ℕ0s⟶ω ∧ ∀𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) → 𝑥 = 𝑦)))
6858, 66, 67mpbir2an 711 . 2 ( bday ↾ ℕ0s):ℕ0s1-1→ω
69 df-f1o 6506 . 2 (( bday ↾ ℕ0s):ℕ0s1-1-onto→ω ↔ (( bday ↾ ℕ0s):ℕ0s1-1→ω ∧ ( bday ↾ ℕ0s):ℕ0sonto→ω))
7068, 56, 69mpbir2an 711 1 ( bday ↾ ℕ0s):ℕ0s1-1-onto→ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3910  wss 3911  c0 4292  dom cdm 5631  ran crn 5632  cres 5633  suc csuc 6322  Fun wfun 6493   Fn wfn 6494  wf 6495  1-1wf1 6496  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  ωcom 7822   No csur 27584   bday cbday 27586   0s c0s 27771   1s c1s 27772   +s cadds 27906  Onscons 28192  0scnn0s 28246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-nadd 8607  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27773  df-1s 27774  df-made 27792  df-old 27793  df-left 27795  df-right 27796  df-norec 27885  df-norec2 27896  df-adds 27907  df-negs 27967  df-subs 27968  df-ons 28193  df-n0s 28248
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator