MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayn0sf1o Structured version   Visualization version   GIF version

Theorem bdayn0sf1o 28266
Description: The birthday function restricted to the non-negative surreal integers is a bijection with the finite ordinals. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
bdayn0sf1o ( bday ↾ ℕ0s):ℕ0s1-1-onto→ω

Proof of Theorem bdayn0sf1o
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdayfun 27691 . . . . . . 7 Fun bday
2 funres 6561 . . . . . . 7 (Fun bday → Fun ( bday ↾ ℕ0s))
31, 2ax-mp 5 . . . . . 6 Fun ( bday ↾ ℕ0s)
4 dmres 5986 . . . . . . 7 dom ( bday ↾ ℕ0s) = (ℕ0s ∩ dom bday )
5 bdaydm 27693 . . . . . . . 8 dom bday = No
65ineq2i 4183 . . . . . . 7 (ℕ0s ∩ dom bday ) = (ℕ0s No )
7 n0ssno 28220 . . . . . . . 8 0s No
8 dfss2 3935 . . . . . . . 8 (ℕ0s No ↔ (ℕ0s No ) = ℕ0s)
97, 8mpbi 230 . . . . . . 7 (ℕ0s No ) = ℕ0s
104, 6, 93eqtri 2757 . . . . . 6 dom ( bday ↾ ℕ0s) = ℕ0s
11 df-fn 6517 . . . . . 6 (( bday ↾ ℕ0s) Fn ℕ0s ↔ (Fun ( bday ↾ ℕ0s) ∧ dom ( bday ↾ ℕ0s) = ℕ0s))
123, 10, 11mpbir2an 711 . . . . 5 ( bday ↾ ℕ0s) Fn ℕ0s
13 fvres 6880 . . . . . . . . 9 (𝑥 ∈ ℕ0s → (( bday ↾ ℕ0s)‘𝑥) = ( bday 𝑥))
14 n0sbday 28251 . . . . . . . . 9 (𝑥 ∈ ℕ0s → ( bday 𝑥) ∈ ω)
1513, 14eqeltrd 2829 . . . . . . . 8 (𝑥 ∈ ℕ0s → (( bday ↾ ℕ0s)‘𝑥) ∈ ω)
1615rgen 3047 . . . . . . 7 𝑥 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑥) ∈ ω
17 fnfvrnss 7096 . . . . . . 7 ((( bday ↾ ℕ0s) Fn ℕ0s ∧ ∀𝑥 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑥) ∈ ω) → ran ( bday ↾ ℕ0s) ⊆ ω)
1812, 16, 17mp2an 692 . . . . . 6 ran ( bday ↾ ℕ0s) ⊆ ω
19 eqeq2 2742 . . . . . . . . . 10 (𝑏 = ∅ → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = ∅))
2019rexbidv 3158 . . . . . . . . 9 (𝑏 = ∅ → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = ∅))
21 eqeq2 2742 . . . . . . . . . 10 (𝑏 = 𝑎 → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = 𝑎))
2221rexbidv 3158 . . . . . . . . 9 (𝑏 = 𝑎 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑎))
23 eqeq2 2742 . . . . . . . . . . 11 (𝑏 = suc 𝑎 → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = suc 𝑎))
2423rexbidv 3158 . . . . . . . . . 10 (𝑏 = suc 𝑎 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = suc 𝑎))
25 fveqeq2 6870 . . . . . . . . . . 11 (𝑦 = 𝑧 → (( bday 𝑦) = suc 𝑎 ↔ ( bday 𝑧) = suc 𝑎))
2625cbvrexvw 3217 . . . . . . . . . 10 (∃𝑦 ∈ ℕ0s ( bday 𝑦) = suc 𝑎 ↔ ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎)
2724, 26bitrdi 287 . . . . . . . . 9 (𝑏 = suc 𝑎 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
28 eqeq2 2742 . . . . . . . . . 10 (𝑏 = 𝑥 → (( bday 𝑦) = 𝑏 ↔ ( bday 𝑦) = 𝑥))
2928rexbidv 3158 . . . . . . . . 9 (𝑏 = 𝑥 → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑏 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥))
30 0n0s 28229 . . . . . . . . . 10 0s ∈ ℕ0s
31 bday0s 27747 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
32 fveqeq2 6870 . . . . . . . . . . 11 (𝑦 = 0s → (( bday 𝑦) = ∅ ↔ ( bday ‘ 0s ) = ∅))
3332rspcev 3591 . . . . . . . . . 10 (( 0s ∈ ℕ0s ∧ ( bday ‘ 0s ) = ∅) → ∃𝑦 ∈ ℕ0s ( bday 𝑦) = ∅)
3430, 31, 33mp2an 692 . . . . . . . . 9 𝑦 ∈ ℕ0s ( bday 𝑦) = ∅
35 fveqeq2 6870 . . . . . . . . . . . . 13 (𝑧 = (𝑦 +s 1s ) → (( bday 𝑧) = suc ( bday 𝑦) ↔ ( bday ‘(𝑦 +s 1s )) = suc ( bday 𝑦)))
36 peano2n0s 28230 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0s → (𝑦 +s 1s ) ∈ ℕ0s)
37 bdayn0p1 28265 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0s → ( bday ‘(𝑦 +s 1s )) = suc ( bday 𝑦))
3835, 36, 37rspcedvdw 3594 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0s → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc ( bday 𝑦))
3938adantl 481 . . . . . . . . . . 11 ((𝑎 ∈ ω ∧ 𝑦 ∈ ℕ0s) → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc ( bday 𝑦))
40 suceq 6403 . . . . . . . . . . . . 13 (( bday 𝑦) = 𝑎 → suc ( bday 𝑦) = suc 𝑎)
4140eqeq2d 2741 . . . . . . . . . . . 12 (( bday 𝑦) = 𝑎 → (( bday 𝑧) = suc ( bday 𝑦) ↔ ( bday 𝑧) = suc 𝑎))
4241rexbidv 3158 . . . . . . . . . . 11 (( bday 𝑦) = 𝑎 → (∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc ( bday 𝑦) ↔ ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
4339, 42syl5ibcom 245 . . . . . . . . . 10 ((𝑎 ∈ ω ∧ 𝑦 ∈ ℕ0s) → (( bday 𝑦) = 𝑎 → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
4443rexlimdva 3135 . . . . . . . . 9 (𝑎 ∈ ω → (∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑎 → ∃𝑧 ∈ ℕ0s ( bday 𝑧) = suc 𝑎))
4520, 22, 27, 29, 34, 44finds 7875 . . . . . . . 8 (𝑥 ∈ ω → ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥)
46 fvelrnb 6924 . . . . . . . . . 10 (( bday ↾ ℕ0s) Fn ℕ0s → (𝑥 ∈ ran ( bday ↾ ℕ0s) ↔ ∃𝑦 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑦) = 𝑥))
4712, 46ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran ( bday ↾ ℕ0s) ↔ ∃𝑦 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑦) = 𝑥)
48 fvres 6880 . . . . . . . . . . 11 (𝑦 ∈ ℕ0s → (( bday ↾ ℕ0s)‘𝑦) = ( bday 𝑦))
4948eqeq1d 2732 . . . . . . . . . 10 (𝑦 ∈ ℕ0s → ((( bday ↾ ℕ0s)‘𝑦) = 𝑥 ↔ ( bday 𝑦) = 𝑥))
5049rexbiia 3075 . . . . . . . . 9 (∃𝑦 ∈ ℕ0s (( bday ↾ ℕ0s)‘𝑦) = 𝑥 ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥)
5147, 50bitri 275 . . . . . . . 8 (𝑥 ∈ ran ( bday ↾ ℕ0s) ↔ ∃𝑦 ∈ ℕ0s ( bday 𝑦) = 𝑥)
5245, 51sylibr 234 . . . . . . 7 (𝑥 ∈ ω → 𝑥 ∈ ran ( bday ↾ ℕ0s))
5352ssriv 3953 . . . . . 6 ω ⊆ ran ( bday ↾ ℕ0s)
5418, 53eqssi 3966 . . . . 5 ran ( bday ↾ ℕ0s) = ω
55 df-fo 6520 . . . . 5 (( bday ↾ ℕ0s):ℕ0sonto→ω ↔ (( bday ↾ ℕ0s) Fn ℕ0s ∧ ran ( bday ↾ ℕ0s) = ω))
5612, 54, 55mpbir2an 711 . . . 4 ( bday ↾ ℕ0s):ℕ0sonto→ω
57 fof 6775 . . . 4 (( bday ↾ ℕ0s):ℕ0sonto→ω → ( bday ↾ ℕ0s):ℕ0s⟶ω)
5856, 57ax-mp 5 . . 3 ( bday ↾ ℕ0s):ℕ0s⟶ω
5913, 48eqeqan12d 2744 . . . . 5 ((𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s) → ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) ↔ ( bday 𝑥) = ( bday 𝑦)))
60 n0ons 28235 . . . . . 6 (𝑥 ∈ ℕ0s𝑥 ∈ Ons)
61 n0ons 28235 . . . . . 6 (𝑦 ∈ ℕ0s𝑦 ∈ Ons)
62 bday11on 28173 . . . . . . 7 ((𝑥 ∈ Ons𝑦 ∈ Ons ∧ ( bday 𝑥) = ( bday 𝑦)) → 𝑥 = 𝑦)
63623expia 1121 . . . . . 6 ((𝑥 ∈ Ons𝑦 ∈ Ons) → (( bday 𝑥) = ( bday 𝑦) → 𝑥 = 𝑦))
6460, 61, 63syl2an 596 . . . . 5 ((𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s) → (( bday 𝑥) = ( bday 𝑦) → 𝑥 = 𝑦))
6559, 64sylbid 240 . . . 4 ((𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s) → ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) → 𝑥 = 𝑦))
6665rgen2 3178 . . 3 𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) → 𝑥 = 𝑦)
67 dff13 7232 . . 3 (( bday ↾ ℕ0s):ℕ0s1-1→ω ↔ (( bday ↾ ℕ0s):ℕ0s⟶ω ∧ ∀𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((( bday ↾ ℕ0s)‘𝑥) = (( bday ↾ ℕ0s)‘𝑦) → 𝑥 = 𝑦)))
6858, 66, 67mpbir2an 711 . 2 ( bday ↾ ℕ0s):ℕ0s1-1→ω
69 df-f1o 6521 . 2 (( bday ↾ ℕ0s):ℕ0s1-1-onto→ω ↔ (( bday ↾ ℕ0s):ℕ0s1-1→ω ∧ ( bday ↾ ℕ0s):ℕ0sonto→ω))
7068, 56, 69mpbir2an 711 1 ( bday ↾ ℕ0s):ℕ0s1-1-onto→ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916  wss 3917  c0 4299  dom cdm 5641  ran crn 5642  cres 5643  suc csuc 6337  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  ωcom 7845   No csur 27558   bday cbday 27560   0s c0s 27741   1s c1s 27742   +s cadds 27873  Onscons 28159  0scnn0s 28213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-ons 28160  df-n0s 28215
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator