MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd Structured version   Visualization version   GIF version

Theorem sadadd 16174
Description: For sequences that correspond to valid integers, the adder sequence function produces the sequence for the sum. This is effectively a proof of the correctness of the ripple carry adder, implemented with logic gates corresponding to df-had 1595 and df-cad 1609.

It is interesting to consider in what sense the sadd function can be said to be "adding" things outside the range of the bits function, that is, when adding sequences that are not eventually constant and so do not denote any integer. The correct interpretation is that the sequences are representations of 2-adic integers, which have a natural ring structure. (Contributed by Mario Carneiro, 9-Sep-2016.)

Assertion
Ref Expression
sadadd ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) sadd (bits‘𝐵)) = (bits‘(𝐴 + 𝐵)))

Proof of Theorem sadadd
Dummy variables 𝑘 𝑐 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bitsss 16133 . . . . . 6 (bits‘𝐴) ⊆ ℕ0
2 bitsss 16133 . . . . . 6 (bits‘𝐵) ⊆ ℕ0
3 sadcl 16169 . . . . . 6 (((bits‘𝐴) ⊆ ℕ0 ∧ (bits‘𝐵) ⊆ ℕ0) → ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0)
41, 2, 3mp2an 689 . . . . 5 ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0
54sseli 3917 . . . 4 (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) → 𝑘 ∈ ℕ0)
65a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) → 𝑘 ∈ ℕ0))
7 bitsss 16133 . . . . 5 (bits‘(𝐴 + 𝐵)) ⊆ ℕ0
87sseli 3917 . . . 4 (𝑘 ∈ (bits‘(𝐴 + 𝐵)) → 𝑘 ∈ ℕ0)
98a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ (bits‘(𝐴 + 𝐵)) → 𝑘 ∈ ℕ0))
10 eqid 2738 . . . . . . . . 9 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
11 eqid 2738 . . . . . . . . 9 (bits ↾ ℕ0) = (bits ↾ ℕ0)
12 simpll 764 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℤ)
13 simplr 766 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℤ)
14 simpr 485 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
15 1nn0 12249 . . . . . . . . . . 11 1 ∈ ℕ0
1615a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
1714, 16nn0addcld 12297 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
1810, 11, 12, 13, 17sadaddlem 16173 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = (bits‘((𝐴 + 𝐵) mod (2↑(𝑘 + 1)))))
1912, 13zaddcld 12430 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℤ)
20 bitsmod 16143 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ0) → (bits‘((𝐴 + 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))))
2119, 17, 20syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘((𝐴 + 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))))
2218, 21eqtrd 2778 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))))
2322eleq2d 2824 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) ↔ 𝑘 ∈ ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1)))))
24 elin 3903 . . . . . 6 (𝑘 ∈ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
25 elin 3903 . . . . . 6 (𝑘 ∈ ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
2623, 24, 253bitr3g 313 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
27 nn0uz 12620 . . . . . . . . 9 0 = (ℤ‘0)
2814, 27eleqtrdi 2849 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
29 eluzfz2 13264 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ (0...𝑘))
3028, 29syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0...𝑘))
3114nn0zd 12424 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
32 fzval3 13456 . . . . . . . 8 (𝑘 ∈ ℤ → (0...𝑘) = (0..^(𝑘 + 1)))
3331, 32syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) = (0..^(𝑘 + 1)))
3430, 33eleqtrd 2841 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0..^(𝑘 + 1)))
3534biantrud 532 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3634biantrud 532 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ↔ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3726, 35, 363bitr4d 311 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 + 𝐵))))
3837ex 413 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ℕ0 → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 + 𝐵)))))
396, 9, 38pm5.21ndd 381 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 + 𝐵))))
4039eqrdv 2736 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) sadd (bits‘𝐵)) = (bits‘(𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  caddwcad 1608  wcel 2106  cin 3886  wss 3887  c0 4256  ifcif 4459  cmpt 5157  ccnv 5588  cres 5591  cfv 6433  (class class class)co 7275  cmpo 7277  1oc1o 8290  2oc2o 8291  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205  2c2 12028  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382   mod cmo 13589  seqcseq 13721  cexp 13782  bitscbits 16126   sadd csad 16127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1542  df-fal 1552  df-had 1595  df-cad 1609  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-bits 16129  df-sad 16158
This theorem is referenced by:  bitsres  16180  smumullem  16199
  Copyright terms: Public domain W3C validator