Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sadadd | Structured version Visualization version GIF version |
Description: For sequences that
correspond to valid integers, the adder sequence
function produces the sequence for the sum. This is effectively a proof
of the correctness of the ripple carry adder, implemented with logic
gates corresponding to df-had 1595 and df-cad 1609.
It is interesting to consider in what sense the sadd function can be said to be "adding" things outside the range of the bits function, that is, when adding sequences that are not eventually constant and so do not denote any integer. The correct interpretation is that the sequences are representations of 2-adic integers, which have a natural ring structure. (Contributed by Mario Carneiro, 9-Sep-2016.) |
Ref | Expression |
---|---|
sadadd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) sadd (bits‘𝐵)) = (bits‘(𝐴 + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitsss 16133 | . . . . . 6 ⊢ (bits‘𝐴) ⊆ ℕ0 | |
2 | bitsss 16133 | . . . . . 6 ⊢ (bits‘𝐵) ⊆ ℕ0 | |
3 | sadcl 16169 | . . . . . 6 ⊢ (((bits‘𝐴) ⊆ ℕ0 ∧ (bits‘𝐵) ⊆ ℕ0) → ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0) | |
4 | 1, 2, 3 | mp2an 689 | . . . . 5 ⊢ ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0 |
5 | 4 | sseli 3917 | . . . 4 ⊢ (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) → 𝑘 ∈ ℕ0) |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) → 𝑘 ∈ ℕ0)) |
7 | bitsss 16133 | . . . . 5 ⊢ (bits‘(𝐴 + 𝐵)) ⊆ ℕ0 | |
8 | 7 | sseli 3917 | . . . 4 ⊢ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) → 𝑘 ∈ ℕ0) |
9 | 8 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ (bits‘(𝐴 + 𝐵)) → 𝑘 ∈ ℕ0)) |
10 | eqid 2738 | . . . . . . . . 9 ⊢ seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
11 | eqid 2738 | . . . . . . . . 9 ⊢ ◡(bits ↾ ℕ0) = ◡(bits ↾ ℕ0) | |
12 | simpll 764 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℤ) | |
13 | simplr 766 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℤ) | |
14 | simpr 485 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
15 | 1nn0 12249 | . . . . . . . . . . 11 ⊢ 1 ∈ ℕ0 | |
16 | 15 | a1i 11 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℕ0) |
17 | 14, 16 | nn0addcld 12297 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0) |
18 | 10, 11, 12, 13, 17 | sadaddlem 16173 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = (bits‘((𝐴 + 𝐵) mod (2↑(𝑘 + 1))))) |
19 | 12, 13 | zaddcld 12430 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℤ) |
20 | bitsmod 16143 | . . . . . . . . 9 ⊢ (((𝐴 + 𝐵) ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ0) → (bits‘((𝐴 + 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1)))) | |
21 | 19, 17, 20 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘((𝐴 + 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1)))) |
22 | 18, 21 | eqtrd 2778 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1)))) |
23 | 22 | eleq2d 2824 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) ↔ 𝑘 ∈ ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))))) |
24 | elin 3903 | . . . . . 6 ⊢ (𝑘 ∈ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))) | |
25 | elin 3903 | . . . . . 6 ⊢ (𝑘 ∈ ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))) | |
26 | 23, 24, 25 | 3bitr3g 313 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))) |
27 | nn0uz 12620 | . . . . . . . . 9 ⊢ ℕ0 = (ℤ≥‘0) | |
28 | 14, 27 | eleqtrdi 2849 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ≥‘0)) |
29 | eluzfz2 13264 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘0) → 𝑘 ∈ (0...𝑘)) | |
30 | 28, 29 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0...𝑘)) |
31 | 14 | nn0zd 12424 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ) |
32 | fzval3 13456 | . . . . . . . 8 ⊢ (𝑘 ∈ ℤ → (0...𝑘) = (0..^(𝑘 + 1))) | |
33 | 31, 32 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) = (0..^(𝑘 + 1))) |
34 | 30, 33 | eleqtrd 2841 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0..^(𝑘 + 1))) |
35 | 34 | biantrud 532 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))) |
36 | 34 | biantrud 532 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ↔ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))) |
37 | 26, 35, 36 | 3bitr4d 311 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 + 𝐵)))) |
38 | 37 | ex 413 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ℕ0 → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 + 𝐵))))) |
39 | 6, 9, 38 | pm5.21ndd 381 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 + 𝐵)))) |
40 | 39 | eqrdv 2736 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) sadd (bits‘𝐵)) = (bits‘(𝐴 + 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 caddwcad 1608 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ifcif 4459 ↦ cmpt 5157 ◡ccnv 5588 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 1oc1o 8290 2oc2o 8291 0cc0 10871 1c1 10872 + caddc 10874 − cmin 11205 2c2 12028 ℕ0cn0 12233 ℤcz 12319 ℤ≥cuz 12582 ...cfz 13239 ..^cfzo 13382 mod cmo 13589 seqcseq 13721 ↑cexp 13782 bitscbits 16126 sadd csad 16127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1507 df-tru 1542 df-fal 1552 df-had 1595 df-cad 1609 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-disj 5040 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-dvds 15964 df-bits 16129 df-sad 16158 |
This theorem is referenced by: bitsres 16180 smumullem 16199 |
Copyright terms: Public domain | W3C validator |