MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd Structured version   Visualization version   GIF version

Theorem sadadd 16378
Description: For sequences that correspond to valid integers, the adder sequence function produces the sequence for the sum. This is effectively a proof of the correctness of the ripple carry adder, implemented with logic gates corresponding to df-had 1595 and df-cad 1608.

It is interesting to consider in what sense the sadd function can be said to be "adding" things outside the range of the bits function, that is, when adding sequences that are not eventually constant and so do not denote any integer. The correct interpretation is that the sequences are representations of 2-adic integers, which have a natural ring structure. (Contributed by Mario Carneiro, 9-Sep-2016.)

Assertion
Ref Expression
sadadd ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) sadd (bits‘𝐵)) = (bits‘(𝐴 + 𝐵)))

Proof of Theorem sadadd
Dummy variables 𝑘 𝑐 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bitsss 16337 . . . . . 6 (bits‘𝐴) ⊆ ℕ0
2 bitsss 16337 . . . . . 6 (bits‘𝐵) ⊆ ℕ0
3 sadcl 16373 . . . . . 6 (((bits‘𝐴) ⊆ ℕ0 ∧ (bits‘𝐵) ⊆ ℕ0) → ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0)
41, 2, 3mp2an 692 . . . . 5 ((bits‘𝐴) sadd (bits‘𝐵)) ⊆ ℕ0
54sseli 3930 . . . 4 (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) → 𝑘 ∈ ℕ0)
65a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) → 𝑘 ∈ ℕ0))
7 bitsss 16337 . . . . 5 (bits‘(𝐴 + 𝐵)) ⊆ ℕ0
87sseli 3930 . . . 4 (𝑘 ∈ (bits‘(𝐴 + 𝐵)) → 𝑘 ∈ ℕ0)
98a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ (bits‘(𝐴 + 𝐵)) → 𝑘 ∈ ℕ0))
10 eqid 2731 . . . . . . . . 9 seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
11 eqid 2731 . . . . . . . . 9 (bits ↾ ℕ0) = (bits ↾ ℕ0)
12 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℤ)
13 simplr 768 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℤ)
14 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
15 1nn0 12397 . . . . . . . . . . 11 1 ∈ ℕ0
1615a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
1714, 16nn0addcld 12446 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
1810, 11, 12, 13, 17sadaddlem 16377 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = (bits‘((𝐴 + 𝐵) mod (2↑(𝑘 + 1)))))
1912, 13zaddcld 12581 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℤ)
20 bitsmod 16347 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ0) → (bits‘((𝐴 + 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))))
2119, 17, 20syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘((𝐴 + 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))))
2218, 21eqtrd 2766 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))))
2322eleq2d 2817 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) ↔ 𝑘 ∈ ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1)))))
24 elin 3918 . . . . . 6 (𝑘 ∈ (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
25 elin 3918 . . . . . 6 (𝑘 ∈ ((bits‘(𝐴 + 𝐵)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
2623, 24, 253bitr3g 313 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
27 nn0uz 12774 . . . . . . . . 9 0 = (ℤ‘0)
2814, 27eleqtrdi 2841 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
29 eluzfz2 13432 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ (0...𝑘))
3028, 29syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0...𝑘))
3114nn0zd 12494 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
32 fzval3 13634 . . . . . . . 8 (𝑘 ∈ ℤ → (0...𝑘) = (0..^(𝑘 + 1)))
3331, 32syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) = (0..^(𝑘 + 1)))
3430, 33eleqtrd 2833 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0..^(𝑘 + 1)))
3534biantrud 531 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3634biantrud 531 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ↔ (𝑘 ∈ (bits‘(𝐴 + 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
3726, 35, 363bitr4d 311 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 + 𝐵))))
3837ex 412 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ℕ0 → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 + 𝐵)))))
396, 9, 38pm5.21ndd 379 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ((bits‘𝐴) sadd (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 + 𝐵))))
4039eqrdv 2729 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) sadd (bits‘𝐵)) = (bits‘(𝐴 + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  caddwcad 1607  wcel 2111  cin 3901  wss 3902  c0 4283  ifcif 4475  cmpt 5172  ccnv 5615  cres 5618  cfv 6481  (class class class)co 7346  cmpo 7348  1oc1o 8378  2oc2o 8379  0cc0 11006  1c1 11007   + caddc 11009  cmin 11344  2c2 12180  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  ..^cfzo 13554   mod cmo 13773  seqcseq 13908  cexp 13968  bitscbits 16330   sadd csad 16331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-had 1595  df-cad 1608  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-bits 16333  df-sad 16362
This theorem is referenced by:  bitsres  16384  smumullem  16403
  Copyright terms: Public domain W3C validator