![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme42g | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 8-Mar-2013.) |
Ref | Expression |
---|---|
cdleme41.b | β’ π΅ = (BaseβπΎ) |
cdleme41.l | β’ β€ = (leβπΎ) |
cdleme41.j | β’ β¨ = (joinβπΎ) |
cdleme41.m | β’ β§ = (meetβπΎ) |
cdleme41.a | β’ π΄ = (AtomsβπΎ) |
cdleme41.h | β’ π» = (LHypβπΎ) |
cdleme41.u | β’ π = ((π β¨ π) β§ π) |
cdleme41.d | β’ π· = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) |
cdleme41.e | β’ πΈ = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) |
cdleme41.g | β’ πΊ = ((π β¨ π) β§ (πΈ β¨ ((π β¨ π‘) β§ π))) |
cdleme41.i | β’ πΌ = (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΊ)) |
cdleme41.n | β’ π = if(π β€ (π β¨ π), πΌ, π·) |
cdleme41.o | β’ π = (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (π β¨ (π₯ β§ π)))) |
cdleme41.f | β’ πΉ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), π, π₯)) |
cdleme34e.v | β’ π = ((π β¨ π) β§ π) |
Ref | Expression |
---|---|
cdleme42g | β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π) β (πΉβ(π β¨ π)) = ((πΉβπ ) β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1202 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π) β (πΎ β HL β§ π β π»)) | |
2 | simp2l 1198 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π) β (π β π΄ β§ Β¬ π β€ π)) | |
3 | simp2r 1199 | . . . 4 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π) β (π β π΄ β§ Β¬ π β€ π)) | |
4 | cdleme41.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
5 | cdleme41.l | . . . . 5 β’ β€ = (leβπΎ) | |
6 | cdleme41.j | . . . . 5 β’ β¨ = (joinβπΎ) | |
7 | cdleme41.m | . . . . 5 β’ β§ = (meetβπΎ) | |
8 | cdleme41.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
9 | cdleme41.h | . . . . 5 β’ π» = (LHypβπΎ) | |
10 | cdleme34e.v | . . . . 5 β’ π = ((π β¨ π) β§ π) | |
11 | 4, 5, 6, 7, 8, 9, 10 | cdleme42a 39646 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β (π β¨ π) = (π β¨ π)) |
12 | 1, 2, 3, 11 | syl3anc 1370 | . . 3 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π) β (π β¨ π) = (π β¨ π)) |
13 | 12 | fveq2d 6895 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π) β (πΉβ(π β¨ π)) = (πΉβ(π β¨ π))) |
14 | cdleme41.u | . . 3 β’ π = ((π β¨ π) β§ π) | |
15 | cdleme41.d | . . 3 β’ π· = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) | |
16 | cdleme41.e | . . 3 β’ πΈ = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) | |
17 | cdleme41.g | . . 3 β’ πΊ = ((π β¨ π) β§ (πΈ β¨ ((π β¨ π‘) β§ π))) | |
18 | cdleme41.i | . . 3 β’ πΌ = (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΊ)) | |
19 | cdleme41.n | . . 3 β’ π = if(π β€ (π β¨ π), πΌ, π·) | |
20 | cdleme41.o | . . 3 β’ π = (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (π β¨ (π₯ β§ π)))) | |
21 | cdleme41.f | . . 3 β’ πΉ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), π, π₯)) | |
22 | 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 20, 21, 10 | cdleme42f 39655 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π) β (πΉβ(π β¨ π)) = ((πΉβπ ) β¨ π)) |
23 | 13, 22 | eqtrd 2771 | 1 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ π β π) β (πΉβ(π β¨ π)) = ((πΉβπ ) β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 βwral 3060 ifcif 4528 class class class wbr 5148 β¦ cmpt 5231 βcfv 6543 β©crio 7367 (class class class)co 7412 Basecbs 17149 lecple 17209 joincjn 18269 meetcmee 18270 Atomscatm 38437 HLchlt 38524 LHypclh 39159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-riotaBAD 38127 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-undef 8262 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-p1 18384 df-lat 18390 df-clat 18457 df-oposet 38350 df-ol 38352 df-oml 38353 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-llines 38673 df-lplanes 38674 df-lvols 38675 df-lines 38676 df-psubsp 38678 df-pmap 38679 df-padd 38971 df-lhyp 39163 |
This theorem is referenced by: cdleme42h 39657 cdleme42mN 39662 |
Copyright terms: Public domain | W3C validator |